A017330 a(n) = (10*n + 5)^2.
25, 225, 625, 1225, 2025, 3025, 4225, 5625, 7225, 9025, 11025, 13225, 15625, 18225, 21025, 24025, 27225, 30625, 34225, 38025, 42025, 46225, 50625, 55225, 60025, 65025, 70225, 75625, 81225, 87025, 93025, 99225, 105625, 112225, 119025, 126025, 133225, 140625
Offset: 0
Examples
5^2 = 25; 15^2 = (1 * 2) concatenate 25 = 225; 25^2 = (2 * 3) concatenate 25 = 625; 35^2 = (3 * 4) concatenate 25 = 1225; 45^2 = (4 * 5) concatenate 25 = 2025; 55^2 = (5 * 6) concatenate 25 = 3025; 65^2 = (6 * 7) concatenate 25 = 4225, etc.
References
- Albert H. Beiler, Recreations in the theory of numbers, New York, Dover, (2nd ed.) 1966. See p. 136.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Magma
[(10*n+5)^2: n in [0..35]]; // Vincenzo Librandi, Aug 02 2011
-
Mathematica
25Range[1, 89, 2]^2 (* Alonso del Arte, Feb 25 2020 *)
-
PARI
a(n)=(10*n+5)^2 \\ Charles R Greathouse IV, Jun 17 2017
-
Scala
(5 to 445 by 10).map(n => n * n) // Alonso del Arte, Feb 25 2020
Formula
G.f.: -25*(x^2 + 6*x + 1)/(x - 1)^3. - Colin Barker, Nov 14 2012
a(n) = A017329(n)^2. - Michel Marcus, Dec 23 2013
a(0) = 25, a(n) = a(n - 1) + 200*n. - Alonso del Arte, Feb 25 2020
From Amiram Eldar, Apr 18 2023: (Start)
a(n) = 5^2 * A016754(n).
Sum_{n>=0} 1/a(n) = Pi^2/200.
Sum_{n>=0} (-1)^n/a(n) = G/25, where G is Catalan's constant (A006752). (End)
E.g.f.: 25*exp(x)*(1 + 8*x + 4*x^2). - Stefano Spezia, Aug 04 2024
Extensions
More terms from Michel Marcus, Dec 23 2013
Comments