cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A017222 a(n) = (9*n + 5)^2.

Original entry on oeis.org

25, 196, 529, 1024, 1681, 2500, 3481, 4624, 5929, 7396, 9025, 10816, 12769, 14884, 17161, 19600, 22201, 24964, 27889, 30976, 34225, 37636, 41209, 44944, 48841, 52900, 57121, 61504, 66049, 70756
Offset: 0

Views

Author

Keywords

Crossrefs

Sequences of the form (m*n+5)^2: A010864 (m=0), A000290 (m=1), A016754 (m=2), A016790 (m=3), A016814 (m=4), A016850 (m=5), A016970 (m=6), A017042 (m=7), A017126 (m=8), this sequence (m=9), A017330 (m=10), A017450 (m=11), A017582 (m=12).

Programs

Formula

a(n) = A017221(n)^2.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, May 22 2012
G.f.: (25 + 121*x + 16*x^2)/(1-x)^3. - R. J. Mathar, Mar 20 2018
From G. C. Greubel, Dec 29 2022: (Start)
a(2*n+1) = 4*A017246(n).
a(n) = a(n-1) + 9*(18*n + 1).
E.g.f.: (25 + 171*x + 81*x^2)*exp(x). (End)

A030485 Squares composed of digits {2, 5, 7}.

Original entry on oeis.org

25, 225, 7225, 27225, 55225, 2772225, 227557225, 277722225, 27777222225, 72272257225, 2777772222225, 25772527522225, 277777722222225, 2775552752755225, 27522257555772225, 27777777222222225, 77525222275255225, 257727727257277225, 722555225555275225, 2275752775775227225
Offset: 1

Views

Author

Patrick De Geest, Dec 11 1999

Keywords

Comments

We can easily prove that, except for the first term, all terms are of the form 100*m^2 + 100*m + 25 where mod(m, 10) is one of the numbers 1, 3, 6 or 8. Also we can show that all numbers of the form ((5 * 10^n - 5)/3)^2 where n is a natural number, are in the sequence. - Farideh Firoozbakht, Dec 09 2008

Crossrefs

Subsequence of A191486. Also subsequence of A017330. Cf. A030487.

Programs

  • Mathematica
    Flatten[Table[Select[FromDigits/@Tuples[{2, 5, 7}, n], IntegerQ[Sqrt[#]] &], {n, 17}]] (* The program takes a long time to run *) (* Harvey P. Dale, Jan 18 2015 *)
    Select[(5Range[1, 9999, 2])^2, Complement[IntegerDigits[#], {2, 5, 7}] == {} &] (* Alonso del Arte, Feb 19 2020 *)
  • PARI
    fromTernary(n, d)=sum(i=0,d-1,[2,5,7][(n\3^i)%3+1]*10^i)
    v=List([25]);for(d=0,16,for(n=0,3^d-1,if(issquare(t=225+1000*fromTernary(n,d)), listput(v,t); print1(t", ")))); Vec(v) \\ Charles R Greathouse IV, Dec 22 2012

Formula

a(n) = A030487(n)^2. - M. F. Hasler, Dec 23 2012

Extensions

Extended and corrected by author, May 08 2000
a(17)-a(19) from Farideh Firoozbakht, Dec 09 2008

A273373 Squares ending in digit 6.

Original entry on oeis.org

16, 36, 196, 256, 576, 676, 1156, 1296, 1936, 2116, 2916, 3136, 4096, 4356, 5476, 5776, 7056, 7396, 8836, 9216, 10816, 11236, 12996, 13456, 15376, 15876, 17956, 18496, 20736, 21316, 23716, 24336, 26896, 27556, 30276, 30976, 33856, 34596, 37636, 38416, 41616
Offset: 1

Views

Author

Vincenzo Librandi, May 21 2016

Keywords

Comments

These are the only squares whose second last digit is odd. This implies that the only squares whose last two digits are the same are those ending with 0 or 4; those ending with 1, 5, and 9 are paired with even second last digits. - Waldemar Puszkarz, May 24 2016

Crossrefs

Cf. A017341 (numbers ending in 6), A017343 (cubes ending in 6).
Cf. squares with last digit k: A017270 (k=0), A273372 (k=1), A273375 (k=4), A017330 (k=5), this sequence (k=6), A273374 (k=9).

Programs

  • Magma
    /* By definition: */ [n^2: n in [0..200] | Modexp(n,2,10) eq 6];
    
  • Magma
    [(10*n - 3*(-1)^n - 5)^2/4: n in [1..50]];
  • Maple
    seq(seq((10*i+j)^2,j=[4,6]),i=0..20); # Robert Israel, May 24 2016
  • Mathematica
    Table[(10 n - 3 (-1)^n - 5)^2/4, {n, 1, 50}]
    CoefficientList[Series[4 (4 + 5 x + 32 x^2 + 5 x^3 + 4 x^4) / ((1 + x)^2 (1 - x)^3), {x, 0, 50}], x]
    Select[Range[250]^2,Mod[#,10]==6&] (* Harvey P. Dale, May 31 2020 *)

Formula

G.f.: 4*x*(4 + 5*x + 32*x^2 + 5*x^3 + 4*x^4)/((1 + x)^2*(1 - x)^3).
a(n) = 4*A047221(n)^2 = (10*n - 3*(-1)^n - 5)^2/4.
a(n) = A090773(n)^2. - Michel Marcus, May 25 2016
Sum_{n>=1} 1/a(n) = 2*Pi^2/(25*(5+sqrt(5))). - Amiram Eldar, Feb 16 2023

Extensions

Corrected and extended by Bruno Berselli, May 23 2016

A348489 Positive numbers whose square starts and ends with exactly one 5.

Original entry on oeis.org

75, 225, 715, 725, 735, 755, 765, 2245, 2255, 2265, 2275, 2285, 2295, 2305, 2315, 2325, 2335, 2345, 2375, 2385, 2395, 2405, 2415, 2425, 2435, 2445, 7075, 7085, 7095, 7105, 7115, 7125, 7135, 7145, 7155, 7165, 7175, 7185, 7195, 7205, 7215, 7225, 7235, 7245
Offset: 1

Views

Author

Bernard Schott, Oct 25 2021

Keywords

Comments

When a square ends with 5, it ends with 25.
From Marius A. Burtea, Oct 25 2021: (Start)
Numbers 75, 765, 7665, 76665, ..., (23*10^k -5) / 3, k >= 1, are terms and have no digits 0, because their squares are 5625, 585225, 58752225, 5877522225, 587775222225, 58777752222225, ...
Also 75, 735, 7335, 73335, ..., (22*10^n+5) / 3, k >= 1, are terms and have no digits 0, because their squares are 5625, 540225, 53802225, 5378022225, 537780222225, 53777802222225, ... (End)

Examples

			75^2 = 5625, hence 75 is a term.
235^2 = 55225, hence 235 is not a term.
		

Crossrefs

Cf. A045859, A017330 (squares ending with 5).
Similar to: A348487 (k=1), A348488 (k=4), this sequence (k=5), A348490 (k=6), A348491 (k=9).
Subsequence of A305719.

Programs

  • Magma
    [n:n in [4..7500]|Intseq(n*n)[1] eq 5 and Intseq(n*n)[#Intseq(n*n)] eq 5 and Intseq(n*n)[-1+#Intseq(n*n)] ne 5 ]; // Marius A. Burtea, Oct 25 2021
    
  • Mathematica
    Select[5 * Range[2, 1500], (d = IntegerDigits[#^2])[[1]] == d[[-1]] == 5 && d[[2]] != 5 &] (* Amiram Eldar, Oct 25 2021 *)
  • PARI
    isok(k) = my(d=digits(sqr(k))); (d[1]==5) && (d[#d]==5) && if (#d>2, (d[2]!=5) && (d[#d-1]!=5), 1); \\ Michel Marcus, Oct 25 2021
    
  • Python
    from itertools import count, takewhile
    def ok(n):
      s = str(n*n); return len(s.rstrip("5")) == len(s.lstrip("5")) == len(s)-1
    def aupto(N):
      r = takewhile(lambda x: x<=N, (10*i+5 for i in count(0)))
      return [k for k in r if ok(k)]
    print(aupto(7245)) # Michael S. Branicky, Oct 26 2021
Showing 1-4 of 4 results.