A273375 Squares ending in digit 4.
4, 64, 144, 324, 484, 784, 1024, 1444, 1764, 2304, 2704, 3364, 3844, 4624, 5184, 6084, 6724, 7744, 8464, 9604, 10404, 11664, 12544, 13924, 14884, 16384, 17424, 19044, 20164, 21904, 23104, 24964, 26244, 28224, 29584, 31684, 33124, 35344, 36864, 39204, 40804, 43264
Offset: 1
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
- Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1).
Crossrefs
Programs
-
Magma
/* By definition: */ [n^2: n in [0..200] | Modexp(n, 2, 10) eq 4];
-
Magma
[(10*n+(-1)^n-5)^2/4: n in [1..50]];
-
Mathematica
Table[(10 n + (-1)^n - 5)^2/4, {n, 1, 50}] (* or *) LinearRecurrence[{1, 2, -2, -1, 1}, {4, 64, 144, 324, 484}, 50] Select[Range[200]^2,Mod[#,10]==4&] (* or *) LinearRecurrence[{1,1,-1},{2,8,12},40]^2(* Harvey P. Dale, Aug 06 2017 *)
Formula
G.f.: 4*x*(1 + 15*x + 18*x^2 + 15*x^3 + x^4) /((1+x)^2*(1-x)^3).
a(n) = 4*A047209(n)^2 = (10*n + (-1)^n - 5)^2/4.
Sum_{n>=1} 1/a(n) = 2*Pi^2/(25*(5-sqrt(5))). - Amiram Eldar, Feb 16 2023
E.g.f.: (4 - 5*x + 25*x^2)*cosh(x) + (9 + 5*x + 25*x^2)*sinh(x) - 4. - Stefano Spezia, Feb 21 2025
Extensions
Edited by Bruno Berselli, May 24 2016
Comments