A273373 Squares ending in digit 6.
16, 36, 196, 256, 576, 676, 1156, 1296, 1936, 2116, 2916, 3136, 4096, 4356, 5476, 5776, 7056, 7396, 8836, 9216, 10816, 11236, 12996, 13456, 15376, 15876, 17956, 18496, 20736, 21316, 23716, 24336, 26896, 27556, 30276, 30976, 33856, 34596, 37636, 38416, 41616
Offset: 1
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
- Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1).
Crossrefs
Programs
-
Magma
/* By definition: */ [n^2: n in [0..200] | Modexp(n,2,10) eq 6];
-
Magma
[(10*n - 3*(-1)^n - 5)^2/4: n in [1..50]];
-
Maple
seq(seq((10*i+j)^2,j=[4,6]),i=0..20); # Robert Israel, May 24 2016
-
Mathematica
Table[(10 n - 3 (-1)^n - 5)^2/4, {n, 1, 50}] CoefficientList[Series[4 (4 + 5 x + 32 x^2 + 5 x^3 + 4 x^4) / ((1 + x)^2 (1 - x)^3), {x, 0, 50}], x] Select[Range[250]^2,Mod[#,10]==6&] (* Harvey P. Dale, May 31 2020 *)
Formula
G.f.: 4*x*(4 + 5*x + 32*x^2 + 5*x^3 + 4*x^4)/((1 + x)^2*(1 - x)^3).
a(n) = 4*A047221(n)^2 = (10*n - 3*(-1)^n - 5)^2/4.
a(n) = A090773(n)^2. - Michel Marcus, May 25 2016
Sum_{n>=1} 1/a(n) = 2*Pi^2/(25*(5+sqrt(5))). - Amiram Eldar, Feb 16 2023
Extensions
Corrected and extended by Bruno Berselli, May 23 2016
Comments