cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A017449 a(n) = 11*n + 5.

Original entry on oeis.org

5, 16, 27, 38, 49, 60, 71, 82, 93, 104, 115, 126, 137, 148, 159, 170, 181, 192, 203, 214, 225, 236, 247, 258, 269, 280, 291, 302, 313, 324, 335, 346, 357, 368, 379, 390, 401, 412, 423, 434, 445, 456, 467, 478, 489, 500, 511, 522, 533, 544, 555, 566, 577, 588
Offset: 0

Views

Author

Keywords

Crossrefs

Powers of the form (11*n+5)^m: this sequence (m=1), A017450 (m=2), A017451 (m=3), A017452 (m=4), A017453 (m=5), A017454 (m=6), A017455 (m=7), A017456 (m=8), A017457 (m=9), A017458 (m=10), A017459 (m=11), A017460 (m=12).

Programs

Formula

From G. C. Greubel, Sep 18 2019: (Start)
a(n) = 2*a(n-1) - a(n-2).
G.f.: (5 + 6*x)/(1-x)^2.
E.g.f.: (5 + 11*x)*exp(x). (End)

A017450 a(n) = (11*n + 5)^2.

Original entry on oeis.org

25, 256, 729, 1444, 2401, 3600, 5041, 6724, 8649, 10816, 13225, 15876, 18769, 21904, 25281, 28900, 32761, 36864, 41209, 45796, 50625, 55696, 61009, 66564, 72361, 78400, 84681, 91204, 97969, 104976, 112225, 119716, 127449, 135424, 143641, 152100, 160801, 169744, 178929, 188356, 198025
Offset: 0

Views

Author

Keywords

Crossrefs

Powers of the form (11*n+5)^m: A017449 (m=1), this sequence (m=2), A017451 (m=3), A017452 (m=4), A017453 (m=5), A017454 (m=6), A017455 (m=7), A017456 (m=8), A017457 (m=9), A017458 (m=10), A017459 (m=11), A017460 (m=12).

Programs

Formula

a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3); a(0)=25, a(1)=256, a(2)=729. - Harvey P. Dale, Dec 08 2013
From G. C. Greubel, Sep 18 2019: (Start)
G.f.: (25 +181*x +36*x^2)/(1-x)^3.
E.g.f.: (25 +231*x +121*x^2)*exp(x). (End)

A017451 a(n) = (11*n + 5)^3.

Original entry on oeis.org

125, 4096, 19683, 54872, 117649, 216000, 357911, 551368, 804357, 1124864, 1520875, 2000376, 2571353, 3241792, 4019679, 4913000, 5929741, 7077888, 8365427, 9800344, 11390625, 13144256, 15069223, 17173512, 19465109, 21952000, 24642171, 27543608, 30664297, 34012224, 37595375, 41421736
Offset: 0

Views

Author

Keywords

Crossrefs

Powers of the form (11*n+5)^m: A017449 (m=1), A017450 (m=2), this sequence (m=3), A017452 (m=4), A017453 (m=5), A017454 (m=6), A017455 (m=7), A017456 (m=8), A017457 (m=9), A017458 (m=10), A017459 (m=11), A017460 (m=12).

Programs

Formula

From G. C. Greubel, Sep 18 2019: (Start)
G.f.: (125 +3596*x +4049*x^2 +216*x^3)/(1-x)^4.
E.g.f.: (125 +3971*x +5808*x^2 +1331*x^3)*exp(x). (End)

A017452 a(n) = (11*n + 5)^4.

Original entry on oeis.org

625, 65536, 531441, 2085136, 5764801, 12960000, 25411681, 45212176, 74805201, 116985856, 174900625, 252047376, 352275361, 479785216, 639128961, 835210000, 1073283121, 1358954496, 1698181681, 2097273616, 2562890625, 3102044416, 3722098081, 4430766096, 5236114321, 6146560000
Offset: 0

Views

Author

Keywords

Crossrefs

Powers of the form (11*n+5)^m: A017449 (m=1), A017450 (m=2), A017451 (m=3), this sequence (m=4), A017453 (m=5), A017454 (m=6), A017455 (m=7), A017456 (m=8), A017457 (m=9), A017458 (m=10), A017459 (m=11), A017460 (m=12).

Programs

  • GAP
    List([0..30], n-> (11*n+5)^4); # G. C. Greubel, Sep 18 2019
  • Magma
    [(11*n+5)^4: n in [0..30]]; // Vincenzo Librandi, Sep 03 2011
    
  • Maple
    seq((11*n+5)^4, n=0..30); # G. C. Greubel, Sep 18 2019
  • Mathematica
    (11*Range[30] -6)^3 (* G. C. Greubel, Sep 18 2019 *)
    LinearRecurrence[{5,-10,10,-5,1},{625,65536,531441,2085136,5764801},30] (* Harvey P. Dale, Nov 29 2022 *)
  • PARI
    vector(30, n, (11*n-6)^4) \\ G. C. Greubel, Sep 18 2019
    
  • Sage
    [(11*n+5)^4 for n in (0..30)] # G. C. Greubel, Sep 18 2019
    

Formula

From G. C. Greubel, Sep 18 2019: (Start)
G.f.: (625 +62411*x +210011*x^2 +77041*x^3 +1296*x^4)/(1-x)^5.
E.g.f.: (625 +64911*x +200497*x^2 +114466*x^3 +14641*x^4)*exp(x). (End)

A017453 a(n) = (11*n + 5)^5.

Original entry on oeis.org

3125, 1048576, 14348907, 79235168, 282475249, 777600000, 1804229351, 3707398432, 6956883693, 12166529024, 20113571875, 31757969376, 48261724457, 71008211968, 101621504799, 141985700000, 194264244901
Offset: 0

Views

Author

Keywords

Crossrefs

Powers of the form (11*n+5)^m: A017449 (m=1), A017450 (m=2), A017451 (m=3), A017452 (m=4), this sequence (m=5), A017454 (m=6), A017455 (m=7), A017456 (m=8), A017457 (m=9), A017458 (m=10), A017459 (m=11), A017460 (m=12).

Programs

Formula

From G. C. Greubel, Sep 18 2019: (Start)
G.f.: (3125 +1029826*x +8104326*x^2 +8807866*x^3 +1373201*x^4 +7776*x^5)/(1-x)^6.
E.g.f.: (3125 +1045451*x +6127440*x^2 +6555175*x^3 +1976535*x^4 +161051*x^5)*exp(x). (End)

A017454 a(n) = (11*n + 5)^6.

Original entry on oeis.org

15625, 16777216, 387420489, 3010936384, 13841287201, 46656000000, 128100283921, 304006671424, 646990183449, 1265319018496, 2313060765625, 4001504141376, 6611856250609, 10509215371264, 16157819263041, 24137569000000, 35161828327081, 50096498540544, 69980368892329
Offset: 0

Views

Author

Keywords

Crossrefs

Powers of the form (11*n+5)^m: A017449 (m=1), A017450 (m=2), A017451 (m=3), A017452 (m=4), A017453 (m=5), this sequence (m=6), A017455 (m=7), A017456 (m=8), A017457 (m=9), A017458 (m=10), A017459 (m=11), A017460 (m=12).

Programs

  • GAP
    List([0..20], n-> (11*n+5)^6); # G. C. Greubel, Sep 18 2019
  • Magma
    [(11*n+5)^6: n in [0..20]]; // Vincenzo Librandi, Sep 03 2011
    
  • Maple
    seq((11*n+5)^6, n=0..20); # G. C. Greubel, Sep 18 2019
  • Mathematica
    (11*Range[0,30]+5)^6 (* or *) LinearRecurrence[{7,-21,35,-35,21,-7,1}, {15625, 16777216, 387420489, 3010936384, 13841287201, 46656000000, 128100283921}, 30] (* Harvey P. Dale, Dec 12 2013 *)
  • PARI
    vector(20, n, (11*n-6)^6) \\ G. C. Greubel, Sep 18 2019
    
  • Sage
    [(11*n+5)^6 for n in (0..20)] # G. C. Greubel, Sep 18 2019
    

Formula

a(n) = 7*a(n-1) -21*a(n-2) +35*a(n-3) -35*a(n-4) +21*a(n-5) -7*a(n-6) + a(n-7); a(0)=15625, a(1)=16777216, a(2)=387420489, a(3)=3010936384, a(4)=13841287201, a(5)=46656000000, a(6)=128100283921. - Harvey P. Dale, Dec 12 2013
From G. C. Greubel, Sep 18 2019: (Start)
G.f.: (15625 +16667841*x +270308102*x^2 +650767622*x^3 +313907097*x^4 +23810977*x^5 +46656*x^6)/(1-x)^7.
E.g.f.: (15625 +16761591*x +176940841*x^2 +316498490*x^3 +168957140*x^4 +31404945*x^5 +1771561*x^6)*exp(x). (End)

A017456 a(n) = (11*n + 5)^8.

Original entry on oeis.org

390625, 4294967296, 282429536481, 4347792138496, 33232930569601, 167961600000000, 645753531245761, 2044140858654976, 5595818096650401, 13685690504052736, 30590228625390625, 63527879748485376, 124097929967680321, 230193853492166656, 408485828788939521
Offset: 0

Views

Author

Keywords

Crossrefs

Powers of the form (11*n+5)^m: A017449 (m=1), A017450 (m=2), A017451 (m=3), A017452 (m=4), A017453 (m=5), A017454 (m=6), A017455 (m=7), this sequence (m=8), A017457 (m=9), A017458 (m=10), A017459 (m=11), A017460 (m=12).

Programs

Formula

From G. C. Greubel, Sep 19 2019: (Start)
G.f.: (390625 +4291451671*x +243788893317*x^2 +1960512320323*x^3 +3909536602339*x^4 +2202777455589*x^5 +315080647543*x^6 +6960640897*x^7 +1679616*x^8)/(1-x)^9.
E.g.f.: (390625 +4294576671*x +136919996257*x^2 +585564673386*x^3 +729964989831*x^4 +353933730150*x^5 +74628778686*x^6 +6781535508*x^7 + 214358881*x^8)*exp(x). (End)

A017457 a(n) = (11*n + 5)^9.

Original entry on oeis.org

1953125, 68719476736, 7625597484987, 165216101262848, 1628413597910449, 10077696000000000, 45848500718449031, 167619550409708032, 520411082988487293, 1423311812421484544, 3517876291919921875
Offset: 0

Views

Author

Keywords

Crossrefs

Powers of the form (11*n+5)^m: A017449 (m=1), A017450 (m=2), A017451 (m=3), A017452 (m=4), A017453 (m=5), A017454 (m=6), A017455 (m=7), A017456 (m=8), this sequence (m=9), A017458 (m=10), A017459 (m=11), A017460 (m=12).

Programs

  • GAP
    List([0..20], n-> (11*n+5)^9); # G. C. Greubel, Sep 19 2019
  • Magma
    [(11*n+5)^9: n in [0..20]]; // Vincenzo Librandi, Sep 03 2011
    
  • Maple
    seq((11*n+5)^9, n=0..20); # G. C. Greubel, Sep 19 2019
  • Mathematica
    (11Range[0,20]+5)^9 (* or *) LinearRecurrence[ {10,-45,120,-210,252,-210, 120,-45,10,-1}, {1953125, 68719476736, 7625597484987, 165216101262848, 1628413597910449, 10077696000000000, 45848500718449031, 167619550409708032, 520411082988487293, 1423311812421484544}, 20] (* Harvey P. Dale, Apr 08 2019 *)
  • PARI
    vector(20, n, (11*n-6)^9) \\ G. C. Greubel, Sep 19 2019
    
  • Sage
    [(11*n+5)^9 for n in (0..20)] # G. C. Greubel, Sep 19 2019
    

Formula

From G. C. Greubel, Sep 19 2019: (Start)
G.f.: (1953125 +68699945486*x +6938490608252*x^2 +92052268491098*x^3 +311158545054314*x^4 +327643477452290*x^5 +108279046743524*x^6 +9393030684758*x^7 +118487099537*x^8 +10077696*x^9)/(1-x)^10.
E.g.f.: (1953125 +68717523611*x +3744080242320*x^2 +23757577547495*x^3 +42209495908965*x^4 +29265638697141*x^5 +9191914318356*x^6 +1377002477202*x^7 +94532266521*x^8 +2357947691*x^9)*exp(x). (End)

A017458 a(n) = (11*n + 5)^10.

Original entry on oeis.org

9765625, 1099511627776, 205891132094649, 6278211847988224, 79792266297612001, 604661760000000000, 3255243551009881201, 13744803133596058624, 48398230717929318249, 148024428491834392576
Offset: 0

Views

Author

Keywords

Crossrefs

Powers of the form (11*n+5)^m: A017449 (m=1), A017450 (m=2), A017451 (m=3), A017452 (m=4), A017453 (m=5), A017454 (m=6), A017455 (m=7), A017456 (m=8), A017457 (m=9), this sequence (m=10), A017459 (m=11), A017460 (m=12).

Programs

  • GAP
    List([0..20], n-> (11*n+5)^10); # G. C. Greubel, Sep 19 2019
  • Magma
    [(11*n+5)^10: n in [0..10]]; // Vincenzo Librandi, Sep 03 2011
    
  • Maple
    seq((11*n+5)^10, n=0..20); # G. C. Greubel, Sep 19 2019
  • Mathematica
    (11*Range[21] -6)^10 (* G. C. Greubel, Sep 19 2019 *)
    LinearRecurrence[{11,-55,165,-330,462,-462,330,-165,55,-11,1},{9765625,1099511627776,205891132094649,6278211847988224,79792266297612001,604661760000000000,3255243551009881201,13744803133596058624,48398230717929318249,148024428491834392576,404555773570791015625},20] (* Harvey P. Dale, Aug 19 2020 *)
  • PARI
    vector(20, n, (11*n-6)^10) \\ G. C. Greubel, Sep 19 2019
    
  • Sage
    [(11*n+5)^10 for n in (0..20)] # G. C. Greubel, Sep 19 2019
    

Formula

From G. C. Greubel, Sep 19 2019: (Start)
G.f.: (9765625 +1099404205901*x +193797041298488*x^2 +4073880923146640* x^3 +21874532039020442*x^4 +38639279895450554*x^5 +24069986191404704*x^6 +4993111339147592*x^7 +274024159430165*x^8 +2015328772513*x^9 +60466176* x^10)/(1-x)^11.
E.g.f.: (9765625 +1099501862151*x +101846059302361*x^2 +943972829470330* x^3 +2329598652561730*x^4 +2220242776827075*x^5 +974547942271827*x^6 + 214025260632480*x^7 +23938528035675*x^8 +1285081491595*x^9 +25937424601* x^10)*exp(x). (End)

A017459 a(n) = (11*n + 5)^11.

Original entry on oeis.org

48828125, 17592186044416, 5559060566555523, 238572050223552512, 3909821048582988049, 36279705600000000000, 231122292121701565271, 1127073856954876807168, 4501035456767426597157, 15394540563150776827904
Offset: 0

Views

Author

Keywords

Crossrefs

Powers of the form (11*n+5)^m: A017449 (m=1), A017450 (m=2), A017451 (m=3), A017452 (m=4), A017453 (m=5), A017454 (m=6), A017455 (m=7), A017456 (m=8), A017457 (m=9), A017458 (m=10), this sequence (m=11), A017460 (m=12).

Programs

Formula

From G. C. Greubel, Sep 19 2019: (Start)
G.f.: (48828125 +17591600106916*x +5347957556678781*x^2 + 173024396961630192*x^3 +1409984186533172778*x^4 +3893323100536505064*x^5 +4065965093212217778*x^6 +1612934439380337744*x^7 +220215589053761433* x^8 +7882270656385972*x^9 +34267542742961*x^10 +362797056*x^11)/(1-x)^12.
E.g.f.: (48828125 +17592137216291*x +2761938121647408*x^2 + 36991274172198511*x^3 +124534035099698400*x^4 +158840151787803530*x^5 + 93615574446397542*x^6 +28270098736853457*x^7 +4580560974275055*x^8 + 396972283518305*x^9 +17118700236660*x^10 +285311670611*x^11)*exp(x). (End)
Showing 1-10 of 11 results. Next