A017463 a(n) = (11*n + 6)^3.
216, 4913, 21952, 59319, 125000, 226981, 373248, 571787, 830584, 1157625, 1560896, 2048383, 2628072, 3307949, 4096000, 5000211, 6028568, 7189057, 8489664, 9938375, 11543176, 13312053, 15252992, 17373979, 19683000, 22188041, 24897088, 27818127, 30959144
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Crossrefs
Programs
-
GAP
List([0..40], n-> (11*n+6)^3); # G. C. Greubel, Sep 19 2019
-
Magma
[(11*n+6)^3: n in [0..40]]; // Vincenzo Librandi, Sep 03 2011
-
Maple
seq((11*n+6)^3, n=0..40); # G. C. Greubel, Sep 19 2019
-
Mathematica
(* From Harvey P. Dale, May 16 2012 : (Start) *) (11Range[0,40]+6)^3 LinearRecurrence[{4,-6,4,-1}, {216,4913, 21952,59319}, 40] (* End *)
-
PARI
vector(40, n, (11*n-5)^3) \\ G. C. Greubel, Sep 19 2019
-
Sage
[(11*n+6)^3 for n in (0..40)] # G. C. Greubel, Sep 19 2019
Formula
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4); a(0)=216, a(1)=4913, a(2)=21952, a(3)=59319. - Harvey P. Dale, May 16 2012
From G. C. Greubel, Sep 19 2019: (Start)
G.f.: (216 +4049*x +3596*x^2 +125*x^3)/(1-x)^4.
E.g.f.: (216 +4697*x +6171*x^2 +1331*x^3)*exp(x). (End)