A017480 a(n) = (11*n + 7)^8.
5764801, 11019960576, 500246412961, 6553600000000, 45767944570401, 218340105584896, 806460091894081, 2478758911082496, 6634204312890625, 15938480745308416, 35114532758015841, 72057594037927936, 139353667211683681, 256289062500000000, 451447246258894081
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).
Crossrefs
Programs
-
GAP
List([0..20], n-> (11*n+7)^8); # G. C. Greubel, Sep 19 2019
-
Magma
[(11*n+7)^8: n in [0..20]]; // Vincenzo Librandi, Sep 04 2011
-
Maple
seq((11*n+7)^8, n=0..20); # G. C. Greubel, Sep 19 2019
-
Mathematica
(11*Range[0,20]+7)^8 (* or *) LinearRecurrence[{9,-36,84,-126,126,-84,36, -9,1}, {5764801,11019960576, 500246412961,6553600000000, 45767944570401, 218340105584896,806460091894081,2478758911082496,6634204312890625}, 20] (* Harvey P. Dale, Mar 30 2016 *)
-
PARI
vector(20, n, (11*n-4)^8) \\ G. C. Greubel, Sep 19 2019
-
Sage
[(11*n+7)^8 for n in (0..20)] # G. C. Greubel, Sep 19 2019
Formula
From G. C. Greubel, Sep 19 2019: (Start)
G.f.: (5764801 +10968077367*x +401274300613*x^2 +2447616620803*x^3 + 3869465113539*x^4 +1725294430213*x^5 +185763408247*x^6 +2562300801*x^7 + 65536*x^8)/(1-x)^9.
E.g.f.: (5764801 +11014195775*x +239106128305*x^2 +847652479674*x^3 + 937956207111*x^4 +417408438678*x^5 +82366957134*x^6 +7093330244*x^7 + 214358881*x^8)*exp(x). (End)