A017481 a(n) = (11*n + 7)^9.
40353607, 198359290368, 14507145975869, 262144000000000, 2334165173090451, 13537086546263552, 58871586708267913, 208215748530929664, 630249409724609375, 1689478959002692096, 4108400332687853397, 9223372036854775808, 19370159742424031659, 38443359375000000000
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (10,-45,120,-210,252,-210,120,-45,10,-1).
Crossrefs
Programs
-
GAP
List([0..20], n-> (11*n+7)^9); # G. C. Greubel, Sep 19 2019
-
Magma
[(11*n+7)^9: n in [0..20]]; // Vincenzo Librandi, Sep 04 2011
-
Maple
seq((11*n+7)^9, n=0..20); # G. C. Greubel, Sep 19 2019
-
Mathematica
(11Range[0,20]+7)^9 (* Harvey P. Dale, Mar 23 2011 *)
-
Maxima
makelist((11*n+7)^9, n, 0, 30); /* Martin Ettl, Oct 21 2012 */
-
PARI
a(n) = (11*n+7)^9; \\ Altug Alkan, Sep 08 2018
-
Sage
[(11*n+7)^9 for n in (0..20)] # G. C. Greubel, Sep 19 2019
Formula
From G. C. Greubel, Sep 19 2019: (Start)
G.f.: (40353607 +197955754298*x +12525368984504*x^2 +125993865875030*x^3 +341752101417866*x^4 +292702580123078*x^5 +77396622719912*x^6 + 5045081881706*x^7 +38440737935*x^8 +262144*x^9)/(1-x)^10.
E.g.f.: (40353607 +198318936761*x +7055233874370*x^2 +36536266598315*x^3 +57159943839075*x^4 +36196841476257*x^5 +10604280696240*x^6 + 1501876268970*x^7 +98390726379*x^8 +2357947691*x^9)*exp(x). (End)