cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A017490 a(n) = (11*n + 8)^6.

Original entry on oeis.org

262144, 47045881, 729000000, 4750104241, 19770609664, 62523502209, 164206490176, 377149515625, 782757789696, 1500730351849, 2699554153024, 4608273662721, 7529536000000, 11853911588401, 18075490334784, 26808753332089, 38806720086016, 54980371265625
Offset: 0

Views

Author

N. J. A. Sloane, Dec 11 1996

Keywords

Crossrefs

Powers of the form (11*n+8)^m: A017485 (m=1), A017486 (m=2), A017487 (m=3), A017488 (m=4), A017489 (m=5), this sequence (m=6), A017491 (m=7), A017492 (m=8), A017493 (m=9), A017494 (m=10), A017495 (m=11), A017496 (m=12).

Programs

  • GAP
    List([0..20], n-> (11*n+8)^6); # G. C. Greubel, Sep 22 2019
  • Magma
    [(11*n+8)^6: n in [0..20]]; // Vincenzo Librandi, Sep 04 2011
    
  • Maple
    A017490:=n->(11*n+8)^6; seq(A017490(n), n=0..20); # Wesley Ivan Hurt, May 21 2014
  • Mathematica
    (11*Range[0,20]+8)^6 (* or *) LinearRecurrence[{7,-21,35,-35,21,-7,1}, {262144, 47045881, 729000000, 4750104241, 19770609664, 62523502209, 164206490176}, 20] (* Harvey P. Dale, Nov 08 2013 *)
  • Maxima
    makelist( (11*n+8)^6, n, 0, 20); /* Martin Ettl, Oct 21 2012 */
    
  • PARI
    vector(20, n, (11*n-3)^6) \\ G. C. Greubel, Sep 22 2019
    
  • Sage
    [(11*n+8)^6 for n in (0..20)] # G. C. Greubel, Sep 22 2019
    

Formula

a(0)=262144, a(1)=47045881, a(2)=729000000, a(3)=4750104241, a(4)=19770609664, a(5)=62523502209, a(6)=164206490176, a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7). - Harvey P. Dale, Nov 08 2013
a(n) = A001014(A017485(n)). - Wesley Ivan Hurt, May 21 2014
From G. C. Greubel, Sep 22 2019: (Start)
G.f.: (262144 +45210873*x +405183857*x^2 +625892702*x^3 +191449182*x^4 +7524433*x^5 +729*x^6)/(1-x)^7.
E.g.f.: (262144 +46783737*x +317585191*x^2 +450663290*x^3 +206511305*x^4 + 34303863*x^5 +1771561*x^6)*exp(x). (End)