A017511 a(n) = (11*n + 10)^3.
1000, 9261, 32768, 79507, 157464, 274625, 438976, 658503, 941192, 1295029, 1728000, 2248091, 2863288, 3581577, 4410944, 5359375, 6434856, 7645373, 8998912, 10503459, 12167000, 13997521, 16003008, 18191447, 20570824, 23149125, 25934336, 28934443, 32157432
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Crossrefs
Programs
-
GAP
List([0..40], n-> (11*n+10)^3); # G. C. Greubel, Oct 29 2019
-
Magma
[(11*n+10)^3: n in [0..40]]; // Vincenzo Librandi, May 26 2016
-
Maple
seq((11*n+10)^3, n=0..40); # G. C. Greubel, Oct 29 2019
-
Mathematica
Table[(11 n + 10)^3, {n, 0, 40}] (* Vincenzo Librandi, May 26 2016 *) (11*Range[40] -1)^3 (* G. C. Greubel, Oct 29 2019 *)
-
Maxima
makelist((11*n+10)^3, n,0,40); /* Martin Ettl, Oct 21 2012 */
-
PARI
vector(41, n, (11*n-1)^3) \\ G. C. Greubel, Oct 29 2019
-
Sage
[(11*n+10)^3 for n in (0..40)] # G. C. Greubel, Oct 29 2019
Formula
G.f.: (1000 + 5261*x + 1724*x^2 + x^3)/(1-x)^4. - Vincenzo Librandi, May 26 2016
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4), for n>3. - Vincenzo Librandi, May 26 2016
E.g.f.: (1000 + 8261*x + 7623*x^2 + 1331*x^3)*exp(x). - G. C. Greubel, Oct 29 2019