A017789 Binomial coefficients C(73,n).
1, 73, 2628, 62196, 1088430, 15020334, 170230452, 1629348612, 13442126049, 97082021465, 621324937376, 3558497368608, 18385569737808, 86270750308176, 369731787035040, 1454278362337824, 5271759063474612, 17675898036356052, 54991682779774384
Offset: 0
Links
- Nathaniel Johnston, Table of n, a(n) for n = 0..73 (full sequence)
Programs
-
GAP
List([0..73], n -> Binomial(73,n)); # G. C. Greubel, Nov 15 2018
-
Magma
[Binomial(73,n): n in [0..73]]; // G. C. Greubel, Nov 15 2018
-
Maple
seq(binomial(73,n), n=0..73); # Nathaniel Johnston, Jun 24 2011
-
Mathematica
Binomial[73, Range[0,73]] (* G. C. Greubel, Nov 15 2018 *)
-
PARI
vector(73, n, n--; binomial(73,n)) \\ G. C. Greubel, Nov 15 2018
-
Sage
[binomial(73, n) for n in range(17)] # Zerinvary Lajos, May 28 2005
Formula
From G. C. Greubel, Nov 15 2018: (Start)
G.f.: (1+x)^73.
E.g.f.: 1F1(-73; 1; -x), where 1F1 is the confluent hypergeometric function. (End)
Comments