A017797 Binomial coefficients C(81,n).
1, 81, 3240, 85320, 1663740, 25621596, 324540216, 3477216600, 32164253550, 260887834350, 1878392407320, 12124169174520, 70724320184700, 375382930211100, 1823288518168200, 8144022047817960, 33594090947249085, 128447994798305325, 456703981505085600
Offset: 0
Links
- Nathaniel Johnston, Table of n, a(n) for n = 0..81 (full sequence)
Programs
-
GAP
List([0..81], n -> Binomial(81,n)); # G. C. Greubel, Nov 15 2018
-
Magma
[Binomial(81,n): n in [0..81]]; // G. C. Greubel, Nov 15 2018
-
Maple
seq(binomial(81,n), n=0..81); # Nathaniel Johnston, Jun 24 2011
-
Mathematica
Binomial[81, Range[0,81]] (* G. C. Greubel, Nov 15 2018 *)
-
PARI
vector(81, n, n--; binomial(81,n)) \\ G. C. Greubel, Nov 15 2018
-
Sage
[binomial(81, n) for n in range(16)] # Zerinvary Lajos, May 29 2009
Formula
From G. C. Greubel, Nov 15 2018: (Start)
G.f.: (1+x)^81.
E.g.f.: 1F1(-81; 1; -x), where 1F1 is the confluent hypergeometric function. (End)
Comments