A017796 Binomial coefficients C(80,n).
1, 80, 3160, 82160, 1581580, 24040016, 300500200, 3176716400, 28987537150, 231900297200, 1646492110120, 10477677064400, 60246643120300, 315136287090800, 1508152231077400, 6635869816740560, 26958221130508525, 101489773667796800
Offset: 0
Links
- Nathaniel Johnston, Table of n, a(n) for n = 0..80 (full sequence)
Programs
-
GAP
List([0..80], n -> Binomial(80,n)); # G. C. Greubel, Nov 15 2018
-
Magma
[Binomial(80,n): n in [0..80]]; // G. C. Greubel, Nov 15 2018
-
Maple
seq(binomial(80,n), n=0..80); # Nathaniel Johnston, Jun 24 2011
-
Mathematica
Binomial[80,Range[0,20]] (* Harvey P. Dale, Aug 11 2012 *)
-
PARI
vector(80, n, n--; binomial(80,n)) \\ G. C. Greubel, Nov 15 2018
-
Sage
[binomial(80, n) for n in range(16)] # Zerinvary Lajos, May 29 2009
Formula
From G. C. Greubel, Nov 15 2018: (Start)
G.f.: (1+x)^80.
E.g.f.: 1F1(-80; 1; -x), where 1F1 is the confluent hypergeometric function. (End)
Comments