cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A017827 a(n) = a(n-4) + a(n-5), with a(0)=1, a(1)=a(2)=a(3)=0, a(4)=1.

Original entry on oeis.org

1, 0, 0, 0, 1, 1, 0, 0, 1, 2, 1, 0, 1, 3, 3, 1, 1, 4, 6, 4, 2, 5, 10, 10, 6, 7, 15, 20, 16, 13, 22, 35, 36, 29, 35, 57, 71, 65, 64, 92, 128, 136, 129, 156, 220, 264, 265, 285, 376, 484, 529, 550, 661, 860, 1013, 1079, 1211, 1521, 1873, 2092, 2290, 2732, 3394, 3965
Offset: 0

Views

Author

Keywords

Programs

  • GAP
    a:=[1,0,0,0,1];; for n in [6..70] do a[n]:=a[n-4]+a[n-5]; od; a; # G. C. Greubel, Mar 05 2019
  • Magma
    I:=[1,0,0,0,1]; [n le 5 select I[n] else Self(n-4) +Self(n-5): n in [1..70]]; // G. C. Greubel, Mar 05 2019
    
  • Mathematica
    CoefficientList[Series[1/(1-x^4-x^5), {x, 0, 70}], x] (* Zerinvary Lajos, Mar 22 2007 *)
  • PARI
    my(x='x+O('x^70)); Vec(1/(1-x^4-x^5)) \\ G. C. Greubel, Mar 05 2019
    
  • Sage
    (1/(1-x^4-x^5)).series(x, 70).coefficients(x, sparse=False) # G. C. Greubel, Mar 05 2019
    

Formula

G.f.: 1/(1-x^4-x^5).
a(n) = Sum_{k=0..floor(n/4)} binomial(k,n-4*k). - Seiichi Manyama, Mar 06 2019

Extensions

More terms from Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Dec 17 1999