A099131
Quintisection and binomial transform of 1/(1-x^4-x^5).
Original entry on oeis.org
1, 1, 1, 1, 2, 7, 22, 57, 128, 264, 529, 1079, 2290, 5022, 11148, 24633, 53824, 116472, 250880, 540536, 1167937, 2531061, 5494247, 11928731, 25880583, 56101768, 121544393, 263289438, 570427339, 1236159756, 2679343966, 5807782301
Offset: 0
-
LinearRecurrence[{5, -10, 10, -4, 1}, {1, 1, 1, 1, 2}, 32] (* Jean-François Alcover, Sep 21 2017 *)
A306713
Square array A(n,k), n >= 0, k >= 1, read by antidiagonals, where column k is the expansion of g.f. 1/(1-x^k-x^(k+1)).
Original entry on oeis.org
1, 1, 1, 1, 0, 2, 1, 0, 1, 3, 1, 0, 0, 1, 5, 1, 0, 0, 1, 1, 8, 1, 0, 0, 0, 1, 2, 13, 1, 0, 0, 0, 1, 0, 2, 21, 1, 0, 0, 0, 0, 1, 1, 3, 34, 1, 0, 0, 0, 0, 1, 0, 2, 4, 55, 1, 0, 0, 0, 0, 0, 1, 0, 1, 5, 89, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 7, 144, 1, 0, 0, 0, 0, 0, 0, 1, 0, 2, 3, 9, 233
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 0, 0, 0, 0, 0, 0, 0, 0, ...
2, 1, 0, 0, 0, 0, 0, 0, 0, ...
3, 1, 1, 0, 0, 0, 0, 0, 0, ...
5, 1, 1, 1, 0, 0, 0, 0, 0, ...
8, 2, 0, 1, 1, 0, 0, 0, 0, ...
13, 2, 1, 0, 1, 1, 0, 0, 0, ...
21, 3, 2, 0, 0, 1, 1, 0, 0, ...
34, 4, 1, 1, 0, 0, 1, 1, 0, ...
55, 5, 1, 2, 0, 0, 0, 1, 1, ...
-
T[n_, k_] := Sum[Binomial[j, n-k*j], {j, 0, Floor[n/k]}]; Table[T[k, n - k + 1], {n, 0, 12}, {k, 0, n}] // Flatten (* Amiram Eldar, Jun 21 2021 *)
A368475
Expansion of o.g.f. (1-x)^5/((1-x)^5 - x^4).
Original entry on oeis.org
1, 0, 0, 0, 1, 5, 15, 35, 71, 136, 265, 550, 1211, 2732, 6126, 13485, 29191, 62648, 134408, 289656, 627401, 1363124, 2963186, 6434484, 13951852, 30221185, 65442625, 141745045, 307137901, 665732417, 1443184210, 3128438335, 6780867186, 14696002913, 31848721632
Offset: 0
Since there are C(4,4) = 1 type of 4, C(5,4) = 5 types of 5, C(6,4) = 15 types of 6, C(7,4) = 35 types of 7, C(8,4) = 70 types of 8, and (12,4) = 495 types of 12, we can write 12 in the following ways:
12: 495 ways;
8+4: 70 ways;
7+5: 175 ways;
6+6: 225 ways;
5+7: 175 ways;
4+8: 70 ways;
4+4+4: 1 way, for a total of 1211 ways.
-
CoefficientList[Series[(1 - x)^5/((1 - x)^5 - x^4), {x, 0, 50}], x] (* Wesley Ivan Hurt, Dec 26 2023 *)
-
Vec((1-x)^5/((1-x)^5 - x^4) + O(x^40)) \\ Michel Marcus, Dec 27 2023
A017867
Expansion of 1/(1 - x^8 - x^9).
Original entry on oeis.org
1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 0, 1, 3, 3, 1, 0, 0, 0, 0, 1, 4, 6, 4, 1, 0, 0, 0, 1, 5, 10, 10, 5, 1, 0, 0, 1, 6, 15, 20, 15, 6, 1, 0, 1, 7, 21, 35, 35, 21, 7, 1, 1, 8, 28, 56, 70, 56, 28, 8, 2, 9
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,1,1).
-
m:=80; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/(1-x^8-x^9))); // Vincenzo Librandi, Jun 28 2013
-
I:=[1,0,0,0,0,0,0,0,1]; [n le 9 select I[n] else Self(n-8)+Self(n-9): n in [1..80]]; // Vincenzo Librandi, Jun 28 2013
-
CoefficientList[Series[1 / (1 - Total[x^Range[8, 9]]), {x, 0, 80}], x] (* Vincenzo Librandi, Jun 28 2013 *)
-
x='x+O('x^66); Vec(1/(1-x^8-x^9)) \\ Altug Alkan, Oct 07 2018
A124789
Expansion of (1+x^2)/(1-x^4-x^5).
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 4, 4, 4, 5, 7, 8, 8, 9, 12, 15, 16, 17, 21, 27, 31, 33, 38, 48, 58, 64, 71, 86, 106, 122, 135, 157, 192, 228, 257, 292, 349, 420, 485, 549, 641, 769, 905, 1034, 1190, 1410, 1674, 1939, 2224, 2600, 3084, 3613
Offset: 0
-
CoefficientList[Series[(1+x^2)/(1-x^4-x^5),{x,0,60}],x] (* or *) LinearRecurrence[ {0,0,0,1,1},{1,0,1,0,1},60] (* Harvey P. Dale, Aug 20 2013 *)
A369849
Number of compositions of 5*n-1 into parts 4 and 5.
Original entry on oeis.org
1, 2, 3, 4, 6, 13, 35, 92, 220, 484, 1013, 2092, 4382, 9404, 20552, 45185, 99009, 215481, 466361, 1006897, 2174834, 4705895, 10200142, 22128873, 48009456, 104111224, 225655617, 488945055, 1059372394, 2295532150, 4974876116, 10782658417, 23371307904, 50655960304
Offset: 1
-
LinearRecurrence[{5, -10, 10, -4, 1}, {1, 2, 3, 4, 6}, 50] (* Paolo Xausa, Mar 15 2024 *)
-
a(n) = sum(k=0, n\4, binomial(n+k, n-1-4*k));
A369850
Number of compositions of 5*n-2 into parts 4 and 5.
Original entry on oeis.org
0, 1, 3, 6, 10, 16, 29, 64, 156, 376, 860, 1873, 3965, 8347, 17751, 38303, 83488, 182497, 397978, 864339, 1871236, 4046070, 8751965, 18952107, 41080980, 89090436, 193201660, 418857277, 907802332, 1967174726, 4262706876, 9237582992, 20020241409, 43391549313
Offset: 1
-
LinearRecurrence[{5, -10, 10, -4, 1}, {0, 1, 3, 6, 10}, 50] (* Paolo Xausa, Mar 15 2024 *)
-
a(n) = sum(k=0, n\4, binomial(n+k, n-2-4*k));
A339087
Number of compositions (ordered partitions) of n into distinct parts congruent to 4 mod 5.
Original entry on oeis.org
1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 2, 1, 0, 0, 0, 2, 1, 0, 0, 0, 4, 1, 0, 0, 6, 4, 1, 0, 0, 6, 6, 1, 0, 0, 12, 6, 1, 0, 0, 18, 8, 1, 0, 24, 24, 8, 1, 0, 24, 30, 10, 1, 0, 48, 42, 10, 1, 0, 72, 48, 12, 1, 0, 120, 60, 12, 1, 120, 144, 72, 14, 1, 120, 216, 84, 14, 1, 240
Offset: 0
a(27) = 6 because we have [14, 9, 4], [14, 4, 9], [9, 14, 4], [9, 4, 14], [4, 14, 9] and [4, 9, 14].
Cf.
A016897,
A017827,
A032020,
A032021,
A109700,
A281243,
A337547,
A337548,
A339059,
A339060,
A339086,
A339088,
A339089.
-
nmax = 80; CoefficientList[Series[Sum[k! x^(k (5 k + 3)/2)/Product[1 - x^(5 j), {j, 1, k}], {k, 0, nmax}], {x, 0, nmax}], x]
A369851
Number of compositions of 5*n-3 into parts 4 and 5.
Original entry on oeis.org
0, 0, 1, 4, 10, 20, 36, 65, 129, 285, 661, 1521, 3394, 7359, 15706, 33457, 71760, 155248, 337745, 735723, 1600062, 3471298, 7517368, 16269333, 35221440, 76302420, 165392856, 358594516, 777451793, 1685254125, 3652428851, 7915135727, 17152718719, 37172960128
Offset: 1
-
LinearRecurrence[{5, -10, 10, -4, 1}, {0, 0, 1, 4, 10}, 50] (* Paolo Xausa, Mar 15 2024 *)
-
a(n) = sum(k=0, n\4, binomial(n+k, n-3-4*k));
A376546
G.f. A(x) satisfies A(x) = 1 + x^4*(1+x)*A(x)^4.
Original entry on oeis.org
1, 0, 0, 0, 1, 1, 0, 0, 4, 8, 4, 0, 22, 66, 66, 22, 140, 560, 840, 560, 1109, 4845, 9690, 9690, 11929, 43473, 106260, 141680, 160080, 419244, 1137304, 1883700, 2304432, 4496076, 12157236, 23614812, 32813500, 53821332, 132821856, 285795696, 451409380
Offset: 0
-
a(n) = sum(k=0, n\4, binomial(k, n-4*k)*binomial(4*k, k)/(3*k+1));
Showing 1-10 of 14 results.
Comments