cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A306713 Square array A(n,k), n >= 0, k >= 1, read by antidiagonals, where column k is the expansion of g.f. 1/(1-x^k-x^(k+1)).

Original entry on oeis.org

1, 1, 1, 1, 0, 2, 1, 0, 1, 3, 1, 0, 0, 1, 5, 1, 0, 0, 1, 1, 8, 1, 0, 0, 0, 1, 2, 13, 1, 0, 0, 0, 1, 0, 2, 21, 1, 0, 0, 0, 0, 1, 1, 3, 34, 1, 0, 0, 0, 0, 1, 0, 2, 4, 55, 1, 0, 0, 0, 0, 0, 1, 0, 1, 5, 89, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 7, 144, 1, 0, 0, 0, 0, 0, 0, 1, 0, 2, 3, 9, 233
Offset: 0

Views

Author

Seiichi Manyama, Mar 05 2019

Keywords

Comments

A(n,k) is the number of compositions of n into parts k and k+1.

Examples

			Square array begins:
    1, 1, 1, 1, 1, 1, 1, 1, 1, ...
    1, 0, 0, 0, 0, 0, 0, 0, 0, ...
    2, 1, 0, 0, 0, 0, 0, 0, 0, ...
    3, 1, 1, 0, 0, 0, 0, 0, 0, ...
    5, 1, 1, 1, 0, 0, 0, 0, 0, ...
    8, 2, 0, 1, 1, 0, 0, 0, 0, ...
   13, 2, 1, 0, 1, 1, 0, 0, 0, ...
   21, 3, 2, 0, 0, 1, 1, 0, 0, ...
   34, 4, 1, 1, 0, 0, 1, 1, 0, ...
   55, 5, 1, 2, 0, 0, 0, 1, 1, ...
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_] := Sum[Binomial[j, n-k*j], {j, 0, Floor[n/k]}]; Table[T[k, n - k + 1], {n, 0, 12}, {k, 0, n}] // Flatten (* Amiram Eldar, Jun 21 2021 *)

Formula

A(n,k) = Sum_{j=0..floor(n/k)} binomial(j,n-k*j).

A306752 a(n) = Sum_{k=0..n} binomial(k, 8*(n-k)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 10, 46, 166, 496, 1288, 3004, 6436, 12871, 24312, 43776, 75736, 126940, 208336, 340120, 564928, 980629, 1817047, 3605252, 7531836, 16146326, 34716826, 73737316, 153430156, 311652271, 617594122, 1195477615, 2266064352, 4221317464
Offset: 0

Views

Author

Seiichi Manyama, Mar 07 2019

Keywords

Crossrefs

Column 8 of A306680.
Cf. A017867.

Programs

  • Mathematica
    a[n_] := Sum[Binomial[k, 8*(n-k)], {k, 0, n}]; Array[a, 38, 0] (* Amiram Eldar, Jun 21 2021 *)
  • PARI
    {a(n) = sum(k=0, n, binomial(k, 8*(n-k)))}
    
  • PARI
    N=66; x='x+O('x^N); Vec((1-x)^7/((1-x)^8-x^9))

Formula

G.f.: (1-x)^7/((1-x)^8 - x^9).
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8) + a(n-9) for n > 8.
a(n) = A017867(8*n).

A127843 a(1) = 1, a(2) = ... = a(9) = 0, a(n) = a(n-9)+a(n-8) for n>9.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 0, 1, 3, 3, 1, 0, 0, 0, 0, 1, 4, 6, 4, 1, 0, 0, 0, 1, 5, 10, 10, 5, 1, 0, 0, 1, 6, 15, 20, 15, 6, 1, 0, 1, 7, 21, 35, 35, 21, 7, 1, 1, 8, 28, 56, 70, 56, 28, 8, 2, 9
Offset: 1

Views

Author

Stephen Suter (sms5064(AT)psu.edu), Apr 02 2007

Keywords

Comments

Part of the phi_k family of sequences defined by a(1)=1, a(2)=...=a(k)=0, a(n)=a(n-k)+a(n-k+1) for n>k. phi_2 is a shift of the Fibonacci sequence and phi_3 is a shift of the Padovan sequence.
Apart from offset same as A017867. - Georg Fischer, Oct 07 2018

References

  • S. Suter, Binet-like formulas for recurrent sequences with characteristic equation x^k=x+1, preprint, 2007. [Apparently unpublished as of May 2016]

Programs

  • GAP
    a:=[1,0,0,0,0,0,0,0,0];;  for n in [10..90] do a[n]:=a[n-8]+a[n-9]; od; a; # Muniru A Asiru, Oct 07 2018
  • Mathematica
    LinearRecurrence[{0,0,0,0,0,0,0,1,1},{1,0,0,0,0,0,0,0,0},120] (* Harvey P. Dale, Jun 15 2017 *)
    CoefficientList[Series[(1-x)*(1+x)*(1+x^2)*(1+x^4) / (1-x^8-x^9), {x, 0, 50}], x] (* Stefano Spezia, Oct 08 2018 *)
  • PARI
    Vec(x*(1-x)*(1+x)*(1+x^2)*(1+x^4)/(1-x^8-x^9) + O(x^100)) \\ Colin Barker, May 30 2016
    

Formula

Binet-like formula: a(n) = Sum_{i=1..9} (r_i^n)/(8(r_i)^2+9(r_i)) where r_i is a root of x^9=x+1.
G.f.: x*(1-x)*(1+x)*(1+x^2)*(1+x^4) / (1-x^8-x^9). - Colin Barker, May 30 2016

A376648 a(n) = Sum_{k=0..floor(n/4)} binomial(floor(k/2),n-4*k).

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 2, 1, 0, 1, 2, 1, 0, 1, 3, 3, 1, 1, 3, 3, 1, 1, 4, 6, 4, 2, 4, 6, 4, 2, 5, 10, 10, 6, 6, 10, 10, 6, 7, 15, 20, 16, 12, 16, 20, 16, 13, 22, 35, 36, 28, 28, 36, 36, 29, 35, 57, 71, 64, 56, 64, 72, 65, 64, 92, 128, 135
Offset: 0

Views

Author

Seiichi Manyama, Oct 01 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\4, binomial(k\2, n-4*k));
    
  • PARI
    my(N=80, x='x+O('x^N)); Vec((1+x^4)/(1-x^8-x^9))

Formula

G.f.: (1-x^8)/((1-x^4) * (1-x^8-x^9)) = (1+x^4)/(1-x^8-x^9).
a(n) = a(n-8) + a(n-9).
a(n) = A017867(n) + A017867(n-4).
Showing 1-4 of 4 results.