cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A017847 Expansion of 1/(1 - x^6 - x^7).

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 1, 3, 3, 1, 0, 0, 1, 4, 6, 4, 1, 0, 1, 5, 10, 10, 5, 1, 1, 6, 15, 20, 15, 6, 2, 7, 21, 35, 35, 21, 8, 9, 28, 56, 70, 56, 29, 17, 37, 84, 126, 126, 85, 46, 54, 121, 210, 252, 211, 131, 100, 175, 331, 462, 463, 342, 231, 275, 506, 793, 925
Offset: 0

Views

Author

Keywords

Comments

Number of compositions of n into parts 6 and 7. - Joerg Arndt, Jun 27 2013

Crossrefs

Column k=6 of A306713.

Programs

  • Magma
    m:=70; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/(1-x^6-x^7))); // Vincenzo Librandi, Jun 27 2013
    
  • Magma
    I:=[1,0,0,0,0,0,1]; [n le 7 select I[n] else Self(n-6)+Self(n-7): n in [1..70]]; // Vincenzo Librandi, Jun 27 2013
  • Mathematica
    CoefficientList[Series[1/(1-x^6-x^7), {x, 0, 70}], x] (* or *)  LinearRecurrence[{0, 0, 0, 0, 0, 1, 1}, {1, 0, 0, 0, 0, 0, 1}, 70] (* Harvey P. Dale, Dec 15 2012 *)
    CoefficientList[Series[1 / (1 - Total[x^Range[6, 7]]),{x, 0, 70}], x] (* Vincenzo Librandi, Jun 27 2013 *)

Formula

a(0)=1, a(1)=0,a(2)=0, a(3)=0, a(4)=0, a(5)=0, a(6)=1; for n>6, a(n) = a(n-6)+a(n-7). - Harvey P. Dale, Dec 15 2012
a(n) = Sum_{k=0..floor(n/6)} binomial(k,n-6*k). - Seiichi Manyama, Oct 01 2024