A373912
Number of compositions of 7*n into parts 6 and 7.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 2, 9, 37, 121, 331, 793, 1718, 3448, 6556, 12121, 22509, 43453, 89150, 193823, 436304, 989759, 2219064, 4869285, 10434412, 21900170, 45297211, 93054446, 191371581, 396480142, 830227401, 1756883373, 3746468095, 8017653633, 17151612398
Offset: 0
A369809
Expansion of 1/(1 - x^6/(1-x)^7).
Original entry on oeis.org
1, 0, 0, 0, 0, 0, 1, 7, 28, 84, 210, 462, 925, 1730, 3108, 5565, 10388, 20944, 45697, 104673, 242481, 553455, 1229305, 2650221, 5565127, 11465758, 23397041, 47757235, 98317135, 205108561, 433747259, 926655972, 1989584722, 4271185538, 9133958765, 19421679515
Offset: 0
-
my(N=40, x='x+O('x^N)); Vec(1/(1-x^6/(1-x)^7))
-
a(n) = sum(k=0, n\6, binomial(n-1+k, n-6*k));
A306713
Square array A(n,k), n >= 0, k >= 1, read by antidiagonals, where column k is the expansion of g.f. 1/(1-x^k-x^(k+1)).
Original entry on oeis.org
1, 1, 1, 1, 0, 2, 1, 0, 1, 3, 1, 0, 0, 1, 5, 1, 0, 0, 1, 1, 8, 1, 0, 0, 0, 1, 2, 13, 1, 0, 0, 0, 1, 0, 2, 21, 1, 0, 0, 0, 0, 1, 1, 3, 34, 1, 0, 0, 0, 0, 1, 0, 2, 4, 55, 1, 0, 0, 0, 0, 0, 1, 0, 1, 5, 89, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 7, 144, 1, 0, 0, 0, 0, 0, 0, 1, 0, 2, 3, 9, 233
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 0, 0, 0, 0, 0, 0, 0, 0, ...
2, 1, 0, 0, 0, 0, 0, 0, 0, ...
3, 1, 1, 0, 0, 0, 0, 0, 0, ...
5, 1, 1, 1, 0, 0, 0, 0, 0, ...
8, 2, 0, 1, 1, 0, 0, 0, 0, ...
13, 2, 1, 0, 1, 1, 0, 0, 0, ...
21, 3, 2, 0, 0, 1, 1, 0, 0, ...
34, 4, 1, 1, 0, 0, 1, 1, 0, ...
55, 5, 1, 2, 0, 0, 0, 1, 1, ...
-
T[n_, k_] := Sum[Binomial[j, n-k*j], {j, 0, Floor[n/k]}]; Table[T[k, n - k + 1], {n, 0, 12}, {k, 0, n}] // Flatten (* Amiram Eldar, Jun 21 2021 *)
A369813
Expansion of 1/(1 - x^2 - x^7).
Original entry on oeis.org
1, 0, 1, 0, 1, 0, 1, 1, 1, 2, 1, 3, 1, 4, 2, 5, 4, 6, 7, 7, 11, 9, 16, 13, 22, 20, 29, 31, 38, 47, 51, 69, 71, 98, 102, 136, 149, 187, 218, 258, 316, 360, 452, 509, 639, 727, 897, 1043, 1257, 1495, 1766, 2134, 2493, 3031, 3536, 4288, 5031, 6054, 7165, 8547, 10196, 12083, 14484, 17114, 20538, 24279, 29085, 34475
Offset: 0
-
CoefficientList[Series[1/(1-x^2-x^7),{x,0,80}],x] (* or *) LinearRecurrence[{0,1,0,0,0,0,1},{1,0,1,0,1,0,1},80] (* Harvey P. Dale, Dec 04 2024 *)
-
my(N=70, x='x+O('x^N)); Vec(1/(1-x^2-x^7))
-
a(n) = sum(k=0, n\7, ((n-5*k)%2==0)*binomial((n-5*k)/2, k));
A369814
Expansion of 1/(1 - x^3 - x^7).
Original entry on oeis.org
1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 2, 0, 1, 3, 1, 1, 4, 3, 1, 5, 6, 2, 6, 10, 5, 7, 15, 11, 9, 21, 21, 14, 28, 36, 25, 37, 57, 46, 51, 85, 82, 76, 122, 139, 122, 173, 224, 204, 249, 346, 343, 371, 519, 567, 575, 768, 913, 918, 1139, 1432, 1485, 1714, 2200, 2398, 2632, 3339, 3830, 4117, 5053, 6030, 6515, 7685
Offset: 0
-
my(N=80, x='x+O('x^N)); Vec(1/(1-x^3-x^7))
-
a(n) = sum(k=0, n\7, ((n-4*k)%3==0)*binomial((n-4*k)/3, k));
A369815
Expansion of 1/(1 - x^4 - x^7).
Original entry on oeis.org
1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 2, 1, 0, 1, 3, 1, 0, 3, 4, 1, 1, 6, 5, 1, 4, 10, 6, 2, 10, 15, 7, 6, 20, 21, 9, 16, 35, 28, 15, 36, 56, 37, 31, 71, 84, 52, 67, 127, 121, 83, 138, 211, 173, 150, 265, 332, 256, 288, 476, 505, 406, 553, 808, 761, 694, 1029, 1313, 1167, 1247, 1837, 2074, 1861, 2276, 3150, 3241
Offset: 0
-
my(N=80, x='x+O('x^N)); Vec(1/(1-x^4-x^7))
-
a(n) = sum(k=0, n\7, ((n-3*k)%4==0)*binomial((n-3*k)/4, k));
A369816
Expansion of 1/(1 - x^5 - x^7).
Original entry on oeis.org
1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 2, 0, 1, 1, 0, 3, 0, 3, 1, 1, 4, 0, 6, 1, 4, 5, 1, 10, 1, 10, 6, 5, 15, 2, 20, 7, 15, 21, 7, 35, 9, 35, 28, 22, 56, 16, 70, 37, 57, 84, 38, 126, 53, 127, 121, 95, 210, 91, 253, 174, 222, 331, 186, 463, 265, 475, 505, 408, 794, 451, 938, 770, 883, 1299, 859, 1732, 1221
Offset: 0
-
my(N=80, x='x+O('x^N)); Vec(1/(1-x^5-x^7))
-
a(n) = sum(k=0, n\7, ((n-2*k)%5==0)*binomial((n-2*k)/5, k));
A373933
Number of compositions of 7*n-1 into parts 6 and 7.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 8, 17, 54, 175, 506, 1299, 3017, 6465, 13021, 25142, 47651, 91104, 180254, 374077, 810381, 1800140, 4019204, 8888489, 19322901, 41223071, 86520282, 179574728, 370946309, 767426451, 1597653852, 3354537225, 7101005320, 15118658953
Offset: 1
A373934
Number of compositions of 7*n-2 into parts 6 and 7.
Original entry on oeis.org
0, 1, 3, 6, 10, 15, 21, 29, 46, 100, 275, 781, 2080, 5097, 11562, 24583, 49725, 97376, 188480, 368734, 742811, 1553192, 3353332, 7372536, 16261025, 35583926, 76806997, 163327279, 342902007, 713848316, 1481274767, 3078928619, 6433465844, 13534471164
Offset: 1
A373935
Number of compositions of 7*n-3 into parts 6 and 7.
Original entry on oeis.org
0, 0, 1, 4, 10, 20, 35, 56, 85, 131, 231, 506, 1287, 3367, 8464, 20026, 44609, 94334, 191710, 380190, 748924, 1491735, 3044927, 6398259, 13770795, 30031820, 65615746, 142422743, 305750022, 648652029, 1362500345, 2843775112, 5922703731, 12356169575
Offset: 1
Showing 1-10 of 15 results.
Comments