cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A373912 Number of compositions of 7*n into parts 6 and 7.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 9, 37, 121, 331, 793, 1718, 3448, 6556, 12121, 22509, 43453, 89150, 193823, 436304, 989759, 2219064, 4869285, 10434412, 21900170, 45297211, 93054446, 191371581, 396480142, 830227401, 1756883373, 3746468095, 8017653633, 17151612398
Offset: 0

Views

Author

Seiichi Manyama, Jun 22 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\6, binomial(n+k, n-6*k));

Formula

a(n) = A017847(7*n).
a(n) = Sum_{k=0..floor(n/6)} binomial(n+k,n-6*k).
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 6*a(n-6) + a(n-7).
G.f.: 1/(1 - x - x^6/(1 - x)^6).

A369809 Expansion of 1/(1 - x^6/(1-x)^7).

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 1, 7, 28, 84, 210, 462, 925, 1730, 3108, 5565, 10388, 20944, 45697, 104673, 242481, 553455, 1229305, 2650221, 5565127, 11465758, 23397041, 47757235, 98317135, 205108561, 433747259, 926655972, 1989584722, 4271185538, 9133958765, 19421679515
Offset: 0

Views

Author

Seiichi Manyama, Feb 01 2024

Keywords

Comments

Number of compositions of 7*n-6 into parts 6 and 7.

Crossrefs

Programs

  • PARI
    my(N=40, x='x+O('x^N)); Vec(1/(1-x^6/(1-x)^7))
    
  • PARI
    a(n) = sum(k=0, n\6, binomial(n-1+k, n-6*k));

Formula

G.f. (1-x)^7/((1-x)^7-x^6).
a(n) = A017847(7*n-6) = Sum_{k=0..floor((7*n-6)/6)} binomial(k,7*n-6-6*k) for n > 0.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 6*a(n-6) + a(n-7) for n > 7.
a(n) = Sum_{k=0..floor(n/6)} binomial(n-1+k,n-6*k).
a(n) = A373912(n)-A373912(n-1). - R. J. Mathar, Jun 24 2024

A306713 Square array A(n,k), n >= 0, k >= 1, read by antidiagonals, where column k is the expansion of g.f. 1/(1-x^k-x^(k+1)).

Original entry on oeis.org

1, 1, 1, 1, 0, 2, 1, 0, 1, 3, 1, 0, 0, 1, 5, 1, 0, 0, 1, 1, 8, 1, 0, 0, 0, 1, 2, 13, 1, 0, 0, 0, 1, 0, 2, 21, 1, 0, 0, 0, 0, 1, 1, 3, 34, 1, 0, 0, 0, 0, 1, 0, 2, 4, 55, 1, 0, 0, 0, 0, 0, 1, 0, 1, 5, 89, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 7, 144, 1, 0, 0, 0, 0, 0, 0, 1, 0, 2, 3, 9, 233
Offset: 0

Views

Author

Seiichi Manyama, Mar 05 2019

Keywords

Comments

A(n,k) is the number of compositions of n into parts k and k+1.

Examples

			Square array begins:
    1, 1, 1, 1, 1, 1, 1, 1, 1, ...
    1, 0, 0, 0, 0, 0, 0, 0, 0, ...
    2, 1, 0, 0, 0, 0, 0, 0, 0, ...
    3, 1, 1, 0, 0, 0, 0, 0, 0, ...
    5, 1, 1, 1, 0, 0, 0, 0, 0, ...
    8, 2, 0, 1, 1, 0, 0, 0, 0, ...
   13, 2, 1, 0, 1, 1, 0, 0, 0, ...
   21, 3, 2, 0, 0, 1, 1, 0, 0, ...
   34, 4, 1, 1, 0, 0, 1, 1, 0, ...
   55, 5, 1, 2, 0, 0, 0, 1, 1, ...
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_] := Sum[Binomial[j, n-k*j], {j, 0, Floor[n/k]}]; Table[T[k, n - k + 1], {n, 0, 12}, {k, 0, n}] // Flatten (* Amiram Eldar, Jun 21 2021 *)

Formula

A(n,k) = Sum_{j=0..floor(n/k)} binomial(j,n-k*j).

A369813 Expansion of 1/(1 - x^2 - x^7).

Original entry on oeis.org

1, 0, 1, 0, 1, 0, 1, 1, 1, 2, 1, 3, 1, 4, 2, 5, 4, 6, 7, 7, 11, 9, 16, 13, 22, 20, 29, 31, 38, 47, 51, 69, 71, 98, 102, 136, 149, 187, 218, 258, 316, 360, 452, 509, 639, 727, 897, 1043, 1257, 1495, 1766, 2134, 2493, 3031, 3536, 4288, 5031, 6054, 7165, 8547, 10196, 12083, 14484, 17114, 20538, 24279, 29085, 34475
Offset: 0

Views

Author

Seiichi Manyama, Feb 02 2024

Keywords

Comments

Number of compositions of n into parts 2 and 7.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/(1-x^2-x^7),{x,0,80}],x] (* or *) LinearRecurrence[{0,1,0,0,0,0,1},{1,0,1,0,1,0,1},80] (* Harvey P. Dale, Dec 04 2024 *)
  • PARI
    my(N=70, x='x+O('x^N)); Vec(1/(1-x^2-x^7))
    
  • PARI
    a(n) = sum(k=0, n\7, ((n-5*k)%2==0)*binomial((n-5*k)/2, k));

Formula

a(n) = a(n-2) + a(n-7).
a(n) = A007380(n-7) for n >= 8.

A369814 Expansion of 1/(1 - x^3 - x^7).

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 2, 0, 1, 3, 1, 1, 4, 3, 1, 5, 6, 2, 6, 10, 5, 7, 15, 11, 9, 21, 21, 14, 28, 36, 25, 37, 57, 46, 51, 85, 82, 76, 122, 139, 122, 173, 224, 204, 249, 346, 343, 371, 519, 567, 575, 768, 913, 918, 1139, 1432, 1485, 1714, 2200, 2398, 2632, 3339, 3830, 4117, 5053, 6030, 6515, 7685
Offset: 0

Views

Author

Seiichi Manyama, Feb 02 2024

Keywords

Comments

Number of compositions of n into parts 3 and 7.

Crossrefs

Programs

  • PARI
    my(N=80, x='x+O('x^N)); Vec(1/(1-x^3-x^7))
    
  • PARI
    a(n) = sum(k=0, n\7, ((n-4*k)%3==0)*binomial((n-4*k)/3, k));

Formula

a(n) = a(n-3) + a(n-7).

A369815 Expansion of 1/(1 - x^4 - x^7).

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 2, 1, 0, 1, 3, 1, 0, 3, 4, 1, 1, 6, 5, 1, 4, 10, 6, 2, 10, 15, 7, 6, 20, 21, 9, 16, 35, 28, 15, 36, 56, 37, 31, 71, 84, 52, 67, 127, 121, 83, 138, 211, 173, 150, 265, 332, 256, 288, 476, 505, 406, 553, 808, 761, 694, 1029, 1313, 1167, 1247, 1837, 2074, 1861, 2276, 3150, 3241
Offset: 0

Views

Author

Seiichi Manyama, Feb 02 2024

Keywords

Comments

Number of compositions of n into parts 4 and 7.

Crossrefs

Programs

  • PARI
    my(N=80, x='x+O('x^N)); Vec(1/(1-x^4-x^7))
    
  • PARI
    a(n) = sum(k=0, n\7, ((n-3*k)%4==0)*binomial((n-3*k)/4, k));

Formula

a(n) = a(n-4) + a(n-7).

A369816 Expansion of 1/(1 - x^5 - x^7).

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 2, 0, 1, 1, 0, 3, 0, 3, 1, 1, 4, 0, 6, 1, 4, 5, 1, 10, 1, 10, 6, 5, 15, 2, 20, 7, 15, 21, 7, 35, 9, 35, 28, 22, 56, 16, 70, 37, 57, 84, 38, 126, 53, 127, 121, 95, 210, 91, 253, 174, 222, 331, 186, 463, 265, 475, 505, 408, 794, 451, 938, 770, 883, 1299, 859, 1732, 1221
Offset: 0

Views

Author

Seiichi Manyama, Feb 02 2024

Keywords

Comments

Number of compositions of n into parts 5 and 7.

Crossrefs

Programs

  • PARI
    my(N=80, x='x+O('x^N)); Vec(1/(1-x^5-x^7))
    
  • PARI
    a(n) = sum(k=0, n\7, ((n-2*k)%5==0)*binomial((n-2*k)/5, k));

Formula

a(n) = a(n-5) + a(n-7).
G.f.: 1/((1-x+x^2)*(1+x-x^3-x^4-x^5)). - R. J. Mathar, Jul 03 2024

A373933 Number of compositions of 7*n-1 into parts 6 and 7.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 17, 54, 175, 506, 1299, 3017, 6465, 13021, 25142, 47651, 91104, 180254, 374077, 810381, 1800140, 4019204, 8888489, 19322901, 41223071, 86520282, 179574728, 370946309, 767426451, 1597653852, 3354537225, 7101005320, 15118658953
Offset: 1

Views

Author

Seiichi Manyama, Jun 23 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\6, binomial(n+k, n-1-6*k));

Formula

a(n) = A017847(7*n-1).
a(n) = Sum_{k=0..floor(n/6)} binomial(n+k,n-1-6*k).
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 6*a(n-6) + a(n-7).
G.f.: x*(1-x)^5/((1-x)^7 - x^6).
a(n) = A373934(n+1)-A373934(n). - R. J. Mathar, Jun 24 2024

A373934 Number of compositions of 7*n-2 into parts 6 and 7.

Original entry on oeis.org

0, 1, 3, 6, 10, 15, 21, 29, 46, 100, 275, 781, 2080, 5097, 11562, 24583, 49725, 97376, 188480, 368734, 742811, 1553192, 3353332, 7372536, 16261025, 35583926, 76806997, 163327279, 342902007, 713848316, 1481274767, 3078928619, 6433465844, 13534471164
Offset: 1

Views

Author

Seiichi Manyama, Jun 23 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\6, binomial(n+k, n-2-6*k));

Formula

a(n) = A017847(7*n-2).
a(n) = Sum_{k=0..floor(n/6)} binomial(n+k,n-2-6*k).
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 6*a(n-6) + a(n-7).
G.f.: x^2*(1-x)^4/((1-x)^7 - x^6).
a(n) = A373935(n+1)-A373935(n). - R. J. Mathar, Jun 24 2024

A373935 Number of compositions of 7*n-3 into parts 6 and 7.

Original entry on oeis.org

0, 0, 1, 4, 10, 20, 35, 56, 85, 131, 231, 506, 1287, 3367, 8464, 20026, 44609, 94334, 191710, 380190, 748924, 1491735, 3044927, 6398259, 13770795, 30031820, 65615746, 142422743, 305750022, 648652029, 1362500345, 2843775112, 5922703731, 12356169575
Offset: 1

Views

Author

Seiichi Manyama, Jun 23 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\6, binomial(n+k, n-3-6*k));

Formula

a(n) = A017847(7*n-3).
a(n) = Sum_{k=0..floor(n/6)} binomial(n+k,n-3-6*k).
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 6*a(n-6) + a(n-7).
G.f.: x^3*(1-x)^3/((1-x)^7 - x^6).
a(n) = A373936(n+1)-A373936(n). - R. J. Mathar, Jun 24 2024
Showing 1-10 of 15 results. Next