cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A017876 Expansion of 1/(1-x^8-x^9-x^10-x^11-x^12-x^13-x^14-x^15-x^16-x^17-x^18).

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 4, 5, 6, 7, 8, 10, 13, 17, 20, 24, 29, 35, 42, 51, 63, 79, 97, 118, 143, 174, 211, 256, 312, 383, 470, 575, 701, 855, 1042, 1269, 1546, 1887, 2306, 2818, 3440, 4198, 5122, 6248, 7620, 9296, 11346, 13852, 16909
Offset: 0

Views

Author

Keywords

Comments

Number of compositions of n into parts p where 8 <= p <= 18. - Joerg Arndt, Jun 29 2013

Programs

  • Magma
    m:=70; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/(1-x^8-x^9-x^10-x^11-x^12-x^13-x^14-x^15-x^16-x^17-x^18))); // Vincenzo Librandi, Jun 29 2013
    
  • Magma
    I:=[1,0,0,0,0,0,0,0,1,1,1,1,1, 1,1,1,2,3]; [n le 18 select I[n] else Self(n-8)+Self(n-9)+Self(n-10)+Self(n-11)+Self(n-12)+Self(n-13)+Self(n-14)+Self(n-15)+Self(n-16)+Self(n-17)+Self(n-18): n in [1..70]]; // Vincenzo Librandi, Jun 29 2013
    
  • Mathematica
    CoefficientList[Series[1/(1-x^8-x^9-x^10-x^11-x^12-x^13-x^14-x^15-x^16 -x^17-x^18), {x, 0, 80}], x] (* Stefan Steinerberger, Apr 10 2006 *)
    CoefficientList[Series[1 / (1 - Total[x^Range[8, 18]]), {x, 0, 70}], x] (* Vincenzo Librandi, Jun 29 2013 *)
    LinearRecurrence[{0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1},{1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,3},70] (* Harvey P. Dale, Jan 04 2017 *)
  • PARI
    my(x='x+O('x^70)); Vec((1-x)/(1-x-x^8+x^19)) \\ G. C. Greubel, Mar 19 2019
    
  • Sage
    ((1-x)/(1-x-x^8+x^19)).series(x, 70).coefficients(x, sparse=False) # G. C. Greubel, Mar 19 2019

Formula

a(n) = a(n-8) +a(n-9) +a(n-10) +a(n-11) +a(n-12) +a(n-13) +a(n-14) +a(n-15) +a(n-16) +a(n-17) +a(n-18) for n>17. - Vincenzo Librandi, Jun 29 2013
G.f.: (1 - x)/(1 - x - x^8 + x^19). - G. C. Greubel, Mar 19 2019

Extensions

More terms from Stefan Steinerberger, Apr 10 2006