A017878 Expansion of 1/(1-x^9-x^10-x^11).
1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 2, 3, 2, 1, 0, 0, 0, 0, 1, 3, 6, 7, 6, 3, 1, 0, 0, 1, 4, 10, 16, 19, 16, 10, 4, 1, 1, 5, 15, 30, 45, 51, 45, 30, 15, 6, 7, 21, 50, 90, 126, 141, 126, 90, 51, 28, 34, 78, 161
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,1,1,1).
Programs
-
Magma
m:=70; R
:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/(1-x^9-x^10-x^11))); // Vincenzo Librandi, Jul 01 2013 -
Mathematica
CoefficientList[Series[1 / (1 - Total[x^Range[9, 11]]), {x, 0, 80}], x] (* Vincenzo Librandi, Jul 01 2013 *) LinearRecurrence[{0,0,0,0,0,0,0,0,1,1,1},{1,0,0,0,0,0,0,0,0,1,1},70] (* Harvey P. Dale, May 25 2023 *)
-
SageMath
def A017878_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( (1-x)/(1-x-x^9+x^(12)) ).list() A017878_list(80) # G. C. Greubel, Sep 25 2024
Formula
a(n) = a(n-9) +a(n-10) +a(n-11) for n>10. - Vincenzo Librandi, Jul 01 2013
Comments