A017880 Expansion of 1/(1-x^9-x^10-x^11-x^12-x^13).
1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 2, 3, 4, 5, 4, 3, 2, 1, 1, 3, 6, 10, 15, 18, 19, 18, 15, 11, 10, 13, 21, 35, 52, 68, 80, 85, 81, 73, 67, 70, 90, 131, 189, 256, 320, 366, 387, 386, 376, 381, 431, 547
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,1,1,1,1,1).
Programs
-
Magma
m:=70; R
:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/(1-x^9-x^10-x^11-x^12-x^13))); // Vincenzo Librandi, Jul 01 2013 -
Mathematica
CoefficientList[Series[1 / (1 - Total[x^Range[9, 13]]), {x, 0, 80}], x] (* Vincenzo Librandi, Jul 01 2013 *) LinearRecurrence[{0,0,0,0,0,0,0,0,1,1,1,1,1},{1,0,0,0,0,0,0,0,0,1,1,1,1},70] (* Harvey P. Dale, Apr 03 2018 *)
-
SageMath
def A017880_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( (1-x)/(1-x-x^9+x^(14)) ).list() A017880_list(80) # G. C. Greubel, Sep 25 2024
Formula
a(n) = a(n-9) +a(n-10) +a(n-11) +a(n-12) +a(n-13) for n>12. - Vincenzo Librandi, Jul 01 2013
Comments