A017882 Expansion of 1/(1-x^9-x^10-x^11-x^12-x^13-x^14-x^15).
1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 2, 3, 4, 5, 6, 7, 6, 5, 5, 6, 8, 11, 15, 21, 28, 33, 36, 38, 40, 43, 48, 56, 71, 94, 122, 152, 182, 211, 239, 266, 294, 332, 390, 474, 586, 725, 888, 1071, 1266, 1466
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,1,1,1,1,1,1,1).
Programs
-
Magma
m:=70; R
:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/(1-x^9-x^10-x^11-x^12-x^13-x^14-x^15))); // Vincenzo Librandi, Jul 01 2013 -
Mathematica
CoefficientList[Series[1 / (1 - Total[x^Range[9, 15]]),{x, 0, 80}], x] (* Vincenzo Librandi, Jul 01 2013 *)
-
SageMath
def A017882_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( (1-x)/(1-x-x^9+x^(16)) ).list() A017882_list(80) # G. C. Greubel, Sep 25 2024
Formula
a(n) = a(n-9) +a(n-10) +a(n-11) +a(n-12) +a(n-13) +a(n-14) +a(n-15) for n>14. - Vincenzo Librandi, Jul 01 2013
Comments