A017890 Expansion of 1/(1-x^10-x^11-x^12-x^13-x^14).
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 4, 3, 2, 1, 0, 1, 3, 6, 10, 15, 18, 19, 18, 15, 10, 7, 7, 11, 20, 35, 52, 68, 80, 85, 80, 69, 57, 50, 55, 80, 125, 186, 255, 320, 365, 382, 371, 341, 311, 311, 367, 496, 701, 966, 1251, 1508, 1693, 1779, 1770, 1716, 1701, 1826
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,0,1,1,1,1,1).
Crossrefs
Cf. A017887.
Programs
-
Magma
R
:=PowerSeriesRing(Integers(), 80); Coefficients(R!(1/(1-x^10-x^11-x^12-x^13-x^14))); // Vincenzo Librandi, Jul 01 2013 -
Mathematica
CoefficientList[Series[1 / (1 - Total[x^Range[10, 14]]), {x, 0, 80}], x] (* Vincenzo Librandi, Jul 01 2013 *)
-
SageMath
def A017890_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( (1-x)/(1-x-x^10+x^15) ).list() A017890_list(80) # G. C. Greubel, Nov 06 2024
Formula
a(n) = a(n-10) +a(n-11) +a(n-12) +a(n-13) +a(n-14) for n>13. - Vincenzo Librandi, Jul 01 2013
Comments