cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A105675 Highest minimal distance of any Type II doubly-even binary self-dual code of length 8n.

Original entry on oeis.org

4, 4, 8, 8, 8, 12, 12, 12
Offset: 1

Views

Author

N. J. A. Sloane, May 06 2005

Keywords

Comments

Is a(9) = 12 or 16? This is an open question of long standing.

Examples

			At length 8 the only Type II doubly-even self-dual code is the Hamming code e_8, which has d=4, so a(1) = 4. The [24,12,8] Golay code has d=8, so a(3) = 8.
		

References

  • F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier/North Holland, 1977.

Crossrefs

A120373 Weight distribution of [72,36,12] doubly-even binary self-dual extended quadratic-residue (or QR) code.

Original entry on oeis.org

1, 0, 0, 2982, 214065, 18303516, 462306915, 4398818490, 16600354155, 25759476488, 16600354155, 4398818490, 462306915, 18303516, 214065, 2982, 0, 0, 1
Offset: 0

Views

Author

N. J. A. Sloane, Mar 19 2009

Keywords

Examples

			The actual weight enumerator is x^72 + 2982*x^60*y^12 + 214065*x^56*y^16 + 18303516*x^52*y^20 + 462306915*x^48*y^24 + y^72 + 4398818490*x^44*y^28 + 16600354155*x^40*y^32 + 25759476488*x^36*y^36 + 16600354155*x^32*y^40 + 4398818490*x^28*y^44 + 462306915*x^24*y^48 + 18303516*x^20*y^52 + 214065*x^16*y^56 + 2982*x^12*y^60.
		

References

  • F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier/North Holland, 1977, Chap. 16.

Crossrefs

Cf. A018236.

Extensions

Name corrected by Jon-Lark Kim, Aug 16 2024

A004675 Theta series of extremal even unimodular lattice in dimension 72.

Original entry on oeis.org

1, 0, 0, 0, 6218175600, 15281788354560, 9026867482214400, 1989179450818560000, 213006159759990870000, 13144087517631410995200, 525100718690287495741440, 14756609779472604266496000, 310160311536865273422120000
Offset: 0

Views

Author

Keywords

Comments

The construction of such a lattice was announced by G. Nebe, Aug 12 2010. - N. J. A. Sloane, Aug 13 2010

Examples

			Theta series begins 1 + 6218175600*q^8 + 15281788354560*q^10 + 9026867482214400*q^12 + 1989179450818560000*q^14 + 213006159759990870000*q^16 + 13144087517631410995200*q^18 + 525100718690287495741440*q^20 + 14756609779472604266496000*q^22 + ...
		

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 195.

Crossrefs

Cf. A018236.

Programs

  • Maple
    # get th2, th3, th4 = Jacobi theta constants out to degree maxd
    maxd:=2001:
    temp0:=trunc(evalf(sqrt(maxd)))+2: a:=0: for i from -temp0 to temp0 do a:=a+q^( (i+1/2)^2): od: th2:=series(a,q,maxd):
    a:=0: for i from -temp0 to temp0 do a:=a+q^(i^2): od: th3:=series(a,q,maxd):
    th4:=series(subs(q=-q,th3),q,maxd):
    # get Leech etc
    t1:=th2^8+th3^8+th4^8: e8:=series(t1/2,q,maxd):
    t1:=th2^8*th3^8*th4^8: delta24:=series(t1/256,q,maxd):
    leech:=series(e8^3-720*delta24,q,maxd):
    u1:=series(leech^3,q,maxd):
    #u2:=series(leech^2*delta24,q,maxd):
    u3:=series(leech*delta24^2,q,maxd):
    u4:=series(delta24^3,q,maxd):
    u5:=series(u1-589680*u3-78624000*u4,q,maxd);
  • Mathematica
    terms = 13;
    maxd = 2*terms;
    th1 = EllipticTheta[1, 0, q];
    th2 = EllipticTheta[2, 0, q];
    th3 = EllipticTheta[3, 0, q];
    th4 = th3 /. q -> -q;
    t1 = th2^8 + th3^8 + th4^8;
    e8 = Series[t1/2, {q, 0, maxd}];
    t1 = th2^8*th3^8*th4^8;
    delta24 = Series[t1/256, {q, 0, maxd}];
    leech = Series[e8^3 - 720*delta24, {q, 0, maxd}];
    u1 = Series[leech^3, {q, 0, maxd}];
    u3 = Series[leech*delta24^2, {q, 0, maxd}];
    u4 = Series[delta24^3, {q, 0, maxd}];
    u5 = Series[u1 - 589680*u3 - 78624000*u4, {q, 0, maxd}];
    CoefficientList[u5, q^2][[1 ;; terms]](* Jean-François Alcover, Jul 08 2017, adapted from Maple *)

A018237 Weight distribution of hypothetical [ 68,34,12 ] code derived from hypothetical [ 72,36,16 ] doubly-even self-dual code.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 442, 14960, 174471, 1478048, 9546537, 46699952, 175078410, 509477760, 1160564636, 2081169376, 2949602799, 3312254400, 2949602799, 2081169376, 1160564636, 509477760, 175078410, 46699952, 9546537, 1478048, 174471, 14960, 442, 0, 0, 0, 0, 0, 1
Offset: 0

Views

Author

Keywords

References

  • S. T. Dougherty and M Harada, Extremal and shadow extremal binary self-dual codes, preprint (Masaaki HARADA, harada(AT)math.okayama-u.ac.jp).

Crossrefs

Cf. A018236.

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Jun 15 2001
a(27)-a(28) corrected by Andrey Zabolotskiy, Nov 22 2021
Showing 1-4 of 4 results.