cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A018248 The 10-adic integer x = ...1787109376 satisfies x^2 = x.

Original entry on oeis.org

6, 7, 3, 9, 0, 1, 7, 8, 7, 1, 8, 0, 0, 4, 7, 3, 4, 7, 7, 0, 6, 2, 2, 0, 0, 8, 3, 3, 9, 8, 5, 9, 9, 0, 9, 8, 3, 0, 1, 9, 6, 7, 6, 7, 5, 6, 7, 5, 2, 4, 4, 9, 9, 9, 8, 8, 1, 6, 3, 1, 9, 1, 4, 0, 9, 4, 3, 3, 8, 7, 3, 9, 9, 0, 1, 0, 9, 4, 1, 6, 0, 7, 9, 1, 0, 3, 8, 1, 9, 8, 0, 8, 6, 2, 9, 9, 6, 4, 0, 6, 9, 0, 6, 3, 7, 5, 3, 2
Offset: 0

Views

Author

Yoshihide Tamori (yo(AT)salk.edu)

Keywords

Comments

The 10-adic numbers a and b defined in A018247 and this sequence satisfy a^2=a, b^2=b, a+b=1, ab=0. - Michael Somos

Examples

			x equals the limit of the (n+1) trailing digits of 6^(5^n):
6^(5^0)=(6), 6^(5^1)=77(76), 6^(5^2)=28430288029929701(376), ...
x = ...9442576576769103890995893380022607743740081787109376.
From _Peter Bala_, Nov 05 2022: (Start)
Trailing digits of 2^(10^n), 4^(10^n) and 6^(10^n) for n = 5:
2^(10^5) = ...9883(109376);
4^(10^5) = ...7979(109376);
6^(10^5) = ...4155(109376). (End)
		

References

  • W. W. R. Ball, Mathematical Recreations & Essays, N.Y. Macmillan Co, 1947.
  • R. Cuculière, Jeux Mathématiques, in Pour la Science, No. 6 (1986), 10-15.
  • V. deGuerre and R. A. Fairbairn, Automorphic numbers, J. Rec. Math., 1 (No. 3, 1968), 173-179.
  • M. Kraitchik, Sphinx, 1935, p. 1.
  • A. M. Robert, A Course in p-adic Analysis, Springer, 2000; see pp. 63, 419.

Crossrefs

A016090 gives associated automorphic numbers.
The difference between this sequence & A018247 is A075693 and their product is A075693.
The six examples given by deGuerre and Fairbairn are A055620, A054869, A018247, A018248, A259468, A259469.

Programs

  • Maple
    a := proc (n) option remember; if n = 1 then 2 else irem(a(n-1)^10, 10^n) end if; end proc:
    # display the digits of a(100) from right to left
    S := convert(a(100), string):
    with(ListTools):
    the_List := [seq(parse(S[i]), i = 1..length(S))]:
    Reverse(the_List); # Peter Bala, Nov 04 2022
  • Mathematica
    b = {6}; g[n_] := Block[{k = 0, c}, While[c = FromDigits[Prepend[b, k]]; Mod[c^2, 10^n] != c, k++ ]; b = Prepend[b, k]]; Do[ g[n], {n, 2, 105}]; Reverse[b]
    With[{n = 150}, Reverse[IntegerDigits[PowerMod[16, 5^n, 10^n]]]] (* IWABUCHI Yu(u)ki, Feb 16 2024 *)
  • PARI
    {a(n)=local(b=6,v=[]);for(k=1,n+1,b=b^5%10^k;v=concat(v,(10*b\10^k)));v[n+1]} \\ Paul D. Hanna, Jul 06 2006
    
  • PARI
    Vecrev(digits(lift(chinese(Mod(0, 2^100), Mod(1, 5^100))))) \\ Seiichi Manyama, Aug 07 2019

Formula

x = r^4 where r=...1441224165530407839804103263499879186432 (A120817). x = 10-adic limit_{n->oo} 6^(5^n). - Paul D. Hanna, Jul 06 2006
For n >= 2, the final n+1 digits of either 2^(10^n), 4^(10^n) or 6^(10^n), when read from right to left, give the first n+1 entries in the sequence. - Peter Bala, Nov 05 2022

Extensions

More terms from David W. Wilson
Edited by David W. Wilson, Sep 26 2002