A018783 Number of partitions of n into parts having a common factor.
0, 0, 1, 1, 2, 1, 4, 1, 5, 3, 8, 1, 14, 1, 16, 9, 22, 1, 38, 1, 45, 17, 57, 1, 94, 7, 102, 30, 138, 1, 218, 1, 231, 58, 298, 21, 451, 1, 491, 103, 644, 1, 919, 1, 1005, 203, 1256, 1, 1784, 15, 1993, 299, 2439, 1, 3365, 62, 3735, 492, 4566, 1, 6252, 1, 6843, 819, 8349, 107, 11096
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
- L. Naughton, G. Pfeiffer, Integer Sequences Realized by the Subgroup Pattern of the Symmetric Group, J. Int. Seq. 16 (2013) #13.5.8
Programs
-
Maple
with(numtheory): with(combinat): a:= n-> `if`(n=0, 0, numbpart(n) -add(mobius(n/d)*numbpart(d), d=divisors(n))): seq(a(n), n=0..100); # Alois P. Heinz, Nov 29 2011
-
Mathematica
A000837[n_] := Sum[ MoebiusMu[n/d]*PartitionsP[d], {d, Divisors[n]}]; a[0] = 0; a[n_] := PartitionsP[n] - A000837[n]; Table[a[n], {n, 0, 66}] (* Jean-François Alcover, Oct 03 2013, after Vladeta Jovovic *)
-
PARI
a(n) = - sumdiv(n, d, (d
Michel Marcus, Oct 07 2017
Formula
a(n) = -Sum_{d|n, dA000041(d) = A000041(n) - A000837(n). - Vladeta Jovovic, Jun 17 2003