A018889 Numbers whose shortest representation as a sum of positive cubes requires exactly 8 cubes.
15, 22, 50, 114, 167, 175, 186, 212, 231, 238, 303, 364, 420, 428, 454
Offset: 1
References
- Joe Roberts, Lure of the Integers, entry 239.
Links
- Jan Bohman and Carl-Erik Froberg, Numerical investigation of Waring's problem for cubes, Nordisk Tidskr. Informationsbehandling (BIT) 21 (1981), 118-122.
- G. L. Honaker, Jr. and Chris Caldwell, et al., A Prime Curios Page.
- K. S. McCurley, An effective seven-cube theorem, J. Number Theory, 19 (1984), 176-183.
- Eric Weisstein's World of Mathematics, Cubic Number
- Eric Weisstein's World of Mathematics, Warings Problem
- Index entries for sequences related to sums of cubes
Crossrefs
Subsequence of A018888.
Programs
-
Mathematica
max = 500; nn = Union[(#*#).# & /@ Tuples[Range[0, 7], {7}]][[1 ;; max]]; Select[{#, PowersRepresentations[#, 8, 3]} & /@ Complement[Range[max], nn] , #[[2]] != {} &][[All, 1]] (* Jean-François Alcover, Jul 21 2011 *)
Extensions
Corrected by Arlin Anderson.
Additional comments from Jud McCranie.
Edited by N. J. A. Sloane, Aug 10 2022
Comments