A018902 a(n+2) = 5*a(n+1) - 3*a(n).
1, 4, 17, 73, 314, 1351, 5813, 25012, 107621, 463069, 1992482, 8573203, 36888569, 158723236, 682950473, 2938582657, 12644061866, 54404561359, 234090621197, 1007239421908, 4333925245949, 18647907964021, 80237764082258, 345245096519227, 1485512190349361
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- D. W. Boyd, Linear recurrence relations for some generalized Pisot sequences, Advances in Number Theory (Kingston ON, 1991) 333-340, Oxford Sci. Publ., Oxford Univ. Press, New York, 1993.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 474
- Index entries for linear recurrences with constant coefficients, signature (5,-3).
- Index entries for Pisot sequences
Programs
-
Magma
I:=[1, 4]; [n le 2 select I[n] else 5*Self(n-1)-3*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 05 2014
-
Mathematica
LinearRecurrence[{5,-3},{1,4},40] (* Harvey P. Dale, Jan 14 2012 *)
-
PARI
Vec((1-x) / (1-5*x+3*x^2) + O(x^30)) \\ Colin Barker, Jan 20 2017
Formula
A member of the family of sequences defined by a(n) = (a(1)+1)*a(n-1) - (a(1)-1)*a(n-2). Alternatively, invert A007052 (invert: define b by 1 + Sum a(n)*x^n = 1/(1 - Sum b(n)*x^n)).
a(n+1)*a(n+1) - a(n+2)*a(n) = -3^n for n>0. - D. G. Rogers, Jul 11 2004
O.g.f.: (1-x)/(1-5*x+3*x^2). - R. J. Mathar, Nov 23 2007
a(n) = 4*a(n-1) + a(n-2) + a(n-3) + a(n-4) + ... + a(0). - Gary W. Adamson, Aug 12 2013
a(n) = (2^(-1-n)*((5-sqrt(13))^n*(-3+sqrt(13)) + (3+sqrt(13))*(5+sqrt(13))^n)) / sqrt(13). - Colin Barker, Jan 20 2017
E.g.f.: exp(5*x/2)*(13*cosh(sqrt(13)*x/2) + 3*sqrt(13)*sinh(sqrt(13)*x/2))/13. - Stefano Spezia, Jul 09 2022
a(n) = Fibonacci(2*n+1) + 2*Sum_{k=0..n-1} a(k)*Fibonacci(2*(n-1-k)+1). - Greg Dresden and Mulong Xu, Aug 10 2024
Comments