cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A018919 Define the generalized Pisot sequence T(a(0),a(1)) by: a(n+2) is the greatest integer such that a(n+2)/a(n+1) < a(n+1)/a(n). This is T(3,9).

Original entry on oeis.org

3, 9, 26, 75, 216, 622, 1791, 5157, 14849, 42756, 123111, 354484, 1020696, 2938977, 8462447, 24366645, 70160958, 202020427, 581694636, 1674922950, 4822748423, 13886550633, 39984728949, 115131438424, 331507764639, 954538564968
Offset: 0

Views

Author

Keywords

Comments

Let M denotes the 4 X 4 matrix = row by row (1,1,1,1)(1,1,1,0)(1,1,0,0)(1,0,0,0) and A(n) the vector (x(n),y(n),z(n),t(n))=M^n*A where A is the vector (1,1,1,1) then a(n)=y(n+1). - Benoit Cloitre, Apr 02 2002
Not to be confused with the Pisot T(3,9) sequence, which is A000244. - R. J. Mathar, Feb 13 2016

Crossrefs

Cf. A076264.

Programs

  • Magma
    Tiv:=[3,9]; [n le 2 select Tiv[n] else Ceiling(Self(n-1)^2/Self(n-2))-1: n in [1..40]]; // Bruno Berselli, Feb 17 2016
  • Mathematica
    CoefficientList[Series[- (x^2 - 3)/(x^3 - 3 x + 1), {x, 0, 30}], x] (* Vincenzo Librandi, Oct 16 2013 *)
    RecurrenceTable[{a[1] == 3, a[2] == 9, a[n] == Ceiling[a[n-1]^2/a[n-2]] - 1}, a, {n, 30}] (* Bruno Berselli, Feb 17 2016 *)
    LinearRecurrence[{3,0,-1},{3,9,26},30] (* Harvey P. Dale, Feb 06 2019 *)
  • PARI
    T(a0, a1, maxn) = a=vector(maxn); a[1]=a0; a[2]=a1; for(n=3, maxn, a[n]=ceil(a[n-1]^2/a[n-2])-1); a
    T(3, 9, 30) \\ Colin Barker, Feb 14 2016
    

Formula

For n>1, a(n) = ceiling(a(n-1)^2/a(n-2)) - 1.
For n>2, a(n) = 3*a(n-1) - a(n-3).
G.f.: -(x^2-3) / (x^3-3*x+1). - Colin Barker, Dec 13 2012