A019279 Superperfect numbers: numbers k such that sigma(sigma(k)) = 2*k where sigma is the sum-of-divisors function (A000203).
2, 4, 16, 64, 4096, 65536, 262144, 1073741824, 1152921504606846976, 309485009821345068724781056, 81129638414606681695789005144064, 85070591730234615865843651857942052864
Offset: 1
Examples
sigma(sigma(4))=2*4, so 4 is in the sequence.
References
- Dieter Bode, Über eine Verallgemeinerung der vollkommenen Zahlen, Dissertation, Braunschweig, 1971.
- Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section B9, pp. 99-100.
- József Sándor, Dragoslav S. Mitrinovic and Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, Chapter III, pp. 110-111.
- József Sándor and Borislav Crstici, Handbook of Number theory II, Kluwer Academic Publishers, 2004, Chapter 1, pp. 38-42.
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 147.
Links
- P. Bundschuh, Aufgabe 601, Elem. Math., Vol. 24 (1969), p. 69; alternative link.
- G. L. Cohen and H. J. J. te Riele, Iterating the sum-of-divisors function, Experimental Mathematics, 5 (1996), pp. 93-100.
- G. G. Dandapat, J. L. Hunsucker, and Carl Pomerance, Some new results on odd perfect numbers, Pacific J. Math. Volume 57, Number 2 (1975), 359-364.
- A. Hoque and H. Kalita, Generalized perfect numbers connected with arithmetic functions, Math. Sci. Lett. 3, No. 3, 249-253 (2014).
- J. L. Hunsucker and Carl Pomerance, There are no odd superperfect number less than 7*10^24, Indian J. Math., Vol. 17 (1975), pp. 107-120.
- H.-J. Kanold, Über "Super perfect numbers", Elem. Math., Vol. 24 (1969), pp. 61-62; alternative link.
- Graham Lord, Even Perfect and Superperfect Numbers, Elem. Math., Vol. 30 (1975), pp. 87-88.
- H. G. Niederreiter, Solution of Aufgabe 601, Elem. Math., Vol. 25 (1970), pp. 66-67; alternative link.
- Paul Shubhankar, Ten Problems of Number Theory, International Journal of Engineering and Technical Research (IJETR), ISSN: 2321-0869, Volume-1, Issue-9, November 2013.
- D. Suryanarayana, Super perfect numbers, Elem. Math., Vol. 24 (1969), pp. 16-17; alternative link.
- D. Suryanarayana, There is no superperfect number of the form p^(2*alpha), Elem. Math., Vol. 28 (1973), pp. 148-150; alternative link.
- László Tóth, The alternating sum-of-divisors function, 9th Joint Conf. on Math. and Comp. Sci., February 9-12, 2012, Siófok, Hungary.
- László Tóth, A survey of the alternating sum-of-divisors function, arXiv:1111.4842 [math.NT], 2011-2014.
- Eric Weisstein's World of Mathematics, Superperfect Number.
- Wikipedia, Superperfect number.
- Tomohiro Yamada, On finiteness of odd superperfect numbers, Journal de Théorie des Nombres de Bordeaux, Vol. 32, No. 1 (2020), pp. 259-274.
Programs
-
Mathematica
sigma = DivisorSigma[1, #]&; For[n = 2, True, n++, If[sigma[sigma[n]] == 2 n, Print[n]]] (* Jean-François Alcover, Sep 11 2018 *)
-
PARI
is(n)=sigma(sigma(n))==2*n \\ Charles R Greathouse IV, Nov 20 2012
-
Python
from itertools import count, islice def A019279_gen(): # generator of terms return (n for n in count(1) if divisor_sigma(divisor_sigma(n)) == 2*n) A019279_list = list(islice(A019279_gen(),6)) # Chai Wah Wu, Feb 18 2022
Formula
a(n) = (1 + A000668(n))/2, if there are no odd superperfect numbers. - Omar E. Pol, Mar 11 2008
Also, if there are no odd superperfect numbers then a(n) = 2^A000043(n)/2 = A072868(n)/2 = A032742(A072868(n)). - Omar E. Pol, Apr 25 2008
a(n) = 2^A090748(n), if there are no odd superperfect numbers. - Ivan N. Ianakiev, Sep 04 2013
Extensions
a(8)-a(9) from Jud McCranie, Jun 01 2000
Corrected by Michel Marcus, Oct 28 2017
Comments