cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A019279 Superperfect numbers: numbers k such that sigma(sigma(k)) = 2*k where sigma is the sum-of-divisors function (A000203).

Original entry on oeis.org

2, 4, 16, 64, 4096, 65536, 262144, 1073741824, 1152921504606846976, 309485009821345068724781056, 81129638414606681695789005144064, 85070591730234615865843651857942052864
Offset: 1

Views

Author

Keywords

Comments

Let sigma_m(n) be result of applying sum-of-divisors function m times to n; call n (m,k)-perfect if sigma_m (n) = k*n; sequence gives (2,2)-perfect numbers.
Even values of these are 2^(p-1) where 2^p-1 is a Mersenne prime (A000043 and A000668). No odd superperfect numbers are known. Hunsucker and Pomerance checked that there are no odd ones below 7 * 10^24. - Jud McCranie, Jun 01 2000
The number of divisors of a(n) is equal to A000043(n), if there are no odd superperfect numbers. - Omar E. Pol, Feb 29 2008
The sum of divisors of a(n) is the n-th Mersenne prime A000668(n), provided that there are no odd superperfect numbers. - Omar E. Pol, Mar 11 2008
Largest proper divisor of A072868(n) if there are no odd superperfect numbers. - Omar E. Pol, Apr 25 2008
This sequence is a divisibility sequence if there are no odd superperfect numbers. - Charles R Greathouse IV, Mar 14 2012
For n>1, sigma(sigma(a(n))) + phi(phi(a(n))) = (9/4)*a(n). - Farideh Firoozbakht, Mar 02 2015
The term "super perfect number" was coined by Suryanarayana (1969). He and Kanold (1969) gave the general form of even superperfect numbers. - Amiram Eldar, Mar 08 2021

Examples

			sigma(sigma(4))=2*4, so 4 is in the sequence.
		

References

  • Dieter Bode, Über eine Verallgemeinerung der vollkommenen Zahlen, Dissertation, Braunschweig, 1971.
  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section B9, pp. 99-100.
  • József Sándor, Dragoslav S. Mitrinovic and Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, Chapter III, pp. 110-111.
  • József Sándor and Borislav Crstici, Handbook of Number theory II, Kluwer Academic Publishers, 2004, Chapter 1, pp. 38-42.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 147.

Crossrefs

Programs

  • Mathematica
    sigma = DivisorSigma[1, #]&;
    For[n = 2, True, n++, If[sigma[sigma[n]] == 2 n, Print[n]]] (* Jean-François Alcover, Sep 11 2018 *)
  • PARI
    is(n)=sigma(sigma(n))==2*n \\ Charles R Greathouse IV, Nov 20 2012
    
  • Python
    from itertools import count, islice
    def A019279_gen(): # generator of terms
        return (n for n in count(1) if divisor_sigma(divisor_sigma(n)) == 2*n)
    A019279_list = list(islice(A019279_gen(),6)) # Chai Wah Wu, Feb 18 2022

Formula

a(n) = (1 + A000668(n))/2, if there are no odd superperfect numbers. - Omar E. Pol, Mar 11 2008
Also, if there are no odd superperfect numbers then a(n) = 2^A000043(n)/2 = A072868(n)/2 = A032742(A072868(n)). - Omar E. Pol, Apr 25 2008
a(n) = 2^A090748(n), if there are no odd superperfect numbers. - Ivan N. Ianakiev, Sep 04 2013

Extensions

a(8)-a(9) from Jud McCranie, Jun 01 2000
Corrected by Michel Marcus, Oct 28 2017