cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A019320 Cyclotomic polynomials at x=2.

Original entry on oeis.org

2, 1, 3, 7, 5, 31, 3, 127, 17, 73, 11, 2047, 13, 8191, 43, 151, 257, 131071, 57, 524287, 205, 2359, 683, 8388607, 241, 1082401, 2731, 262657, 3277, 536870911, 331, 2147483647, 65537, 599479, 43691, 8727391, 4033, 137438953471, 174763, 9588151, 61681
Offset: 0

Views

Author

Keywords

Crossrefs

a(n) = A063696(n) - A063698(n) for up to n=104.
Same sequence in binary: A063672.

Programs

  • Maple
    with(numtheory,cyclotomic); f := n->subs(x=2,cyclotomic(n,x)); seq(f(i),i=0..64);
  • Mathematica
    Join[{2}, Table[Cyclotomic[n, 2], {n, 1, 40}]] (* Jean-François Alcover, Jun 14 2013 *)
  • PARI
    vector(20,n,polcyclo(n,2)) \\ Charles R Greathouse IV, May 18 2011

Formula

(lcm_{k=1..n} (2^k - 1))/lcm_{k=1..n-1} (2^k - 1), n > 1. - Vladeta Jovovic, Jan 20 2002
Let b(1) = 1 and b(n+1) = lcm(b(n), 2^n-1) then Phi(n,2) = b(n+1)/b(n) = a(n). - Thomas Ordowski, May 08 2013
a(0) = 2; for n > 0, a(n) = (2^n-1)/gcd(a(0)*a(1)*...*a(n-1), 2^n-1). - Thomas Ordowski, May 11 2013