cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 37 results. Next

A072226 Numbers k such that the k-th cyclotomic polynomial evaluated at 2 (=A019320(k)) is prime.

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 19, 22, 24, 26, 27, 30, 31, 32, 33, 34, 38, 40, 42, 46, 49, 56, 61, 62, 65, 69, 77, 78, 80, 85, 86, 89, 90, 93, 98, 107, 120, 122, 126, 127, 129, 133, 145, 150, 158, 165, 170, 174, 184, 192, 195, 202, 208, 234, 254, 261
Offset: 1

Views

Author

Reiner Martin, Jul 04 2002

Keywords

Comments

The prime n in this sequence are in A000043, which produce the Mersenne primes. If 2p is in this sequence, with p prime, then p is a Wagstaff number, A000978. - T. D. Noe, Apr 02 2008
While the sequence looks quite dense for small values, note that there are only 10 values in the interval [700,1200]. - M. F. Hasler, Apr 03 2008
No term greater than 12 can be congruent to 4 modulo 8 as proved by Schinzel (1962), see also Pomerance (2024). Note the Aurifeuillean factorization: Product_{4|d, d|8*k+4} Phi(d,2) = 2^(4k+2) + 1 = (2^(2k+1) - 2^(k+1) + 1) * (2^(2k+1) + 2^(k+1) + 1). If Phi(8*k+4,2) is prime, then it divides either 2^(2k+1) - 2^(k+1) + 1 or 2^(2k+1) + 2^(k+1) + 1. This immediately proves that no term can be of the form 4*p for odd primes p >= 5 Since Phi(4*p,2) = (2^(2*p) + 1)/5. - Jianing Song, Apr 04 2022; edited by Max Alekseyev, Dec 03 2024

Crossrefs

Corresponding primes are listed in A292015.

Programs

  • Mathematica
    Select[Range[600], PrimeQ[Cyclotomic[ #, 2]]&]
  • PARI
    for( i=1,999, ispseudoprime( polcyclo(i,2)) && print1( i",")) /* for PARI < 2.4.2 use ...subst(polcyclo(i),x,2)... */ \\ M. F. Hasler, Apr 03 2008

Extensions

Edited by Max Alekseyev, Apr 25 2018

A085021 Number of prime factors of cyclotomic(n,2), which is A019320(n), the value of the n-th cyclotomic polynomial evaluated at x=2.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 1, 2, 1, 2, 1, 1, 2, 3, 1, 1, 1, 1, 1, 2, 2, 2, 1, 2, 1, 2, 1, 3, 2, 2, 1, 3, 2, 1, 2, 3, 3, 3, 2, 3, 1, 2, 2, 2, 2, 1, 1, 2, 2, 1, 2, 2, 3, 1, 2, 3, 2, 3, 2, 2, 3, 1, 1, 3, 1, 3, 2, 2, 2, 1, 1, 2, 2, 1, 1, 3, 4, 1, 2, 3, 2, 2, 1, 3, 4
Offset: 1

Views

Author

T. D. Noe, Jun 19 2003

Keywords

Comments

The Mobius transform of this sequence yields A046051, the number of prime factors of Mersenne number 2^n-1.
The number of prime factors in the primitive part of 2^n-1. - T. D. Noe, Jul 19 2008

Examples

			a(11) = 2 because cyclotomic(11,2) = 2047, which has two factors: 23 and 89.
		

Crossrefs

omega(Phi(n,x)): this sequence (x=2), A085028 (x=3), A085029 (x=4), A085030 (x=5), A085031 (x=6), A085032 (x=7), A085033 (x=8), A085034 (x=9), A085035 (x=10).

Programs

  • Mathematica
    Join[{0}, Table[Plus@@Transpose[FactorInteger[Cyclotomic[n, 2]]][[2]], {n, 2, 100}]]
  • PARI
    a(n) = #factor(polcyclo(n, 2))~; \\ Michel Marcus, Mar 06 2015

A063672 Sequence A019320 in binary.

Original entry on oeis.org

10, 1, 11, 111, 101, 11111, 11, 1111111, 10001, 1001001, 1011, 11111111111, 1101, 1111111111111, 101011, 10010111, 100000001, 11111111111111111, 111001, 1111111111111111111, 11001101, 100100110111, 1010101011
Offset: 0

Views

Author

Antti Karttunen, Aug 03 2001

Keywords

Crossrefs

Programs

  • Maple
    map(convert, A019320,binary); or up to n=104 with: map(convert,[seq(Phi_pos_terms(j,2)-Phi_neg_terms(j,2),j=0..104)],binary);
  • Mathematica
    A063672[n_] := If[n == 0, 10, FromDigits[IntegerDigits[Cyclotomic[n, 2], 2]]];
    Array[A063672, 30, 0] (* Paolo Xausa, Feb 26 2024 *)

A093106 Numbers k such that the k-th cyclotomic polynomial evaluated at 2 (=A019320(k)) is not coprime to k.

Original entry on oeis.org

6, 18, 20, 21, 54, 100, 110, 136, 147, 155, 156, 162, 253, 342, 486, 500, 602, 657, 812, 820, 889, 979, 1029, 1081, 1210, 1332, 1458, 2028, 2265, 2312, 2485, 2500, 2756, 3081, 3164, 3422, 3660, 3924, 4112, 4374, 4422, 4656, 4805, 5253, 5784, 5819, 6498
Offset: 1

Views

Author

Ralf Stephan, Mar 20 2004

Keywords

Comments

Also, numbers k such that the Zsigmondy number Zs(k, 2, 1) differs from the k-th cyclotomic polynomial evaluated at 2, i.e., A064078(k) differs from A019320(k).
Numbers k > 0 such that A019320(k) is not congruent to 1 mod k. These numbers are of the form k = p^j * A002326((p-1)/2), where p is an odd prime and j > 0. Then A019320(k) mod k = gcd(A019320(k), k) = A019320(k) / A064078(k) = p. - Thomas Ordowski, Oct 07 2017

Crossrefs

Programs

  • Mathematica
    Select[Range[10000],GCD[#,Cyclotomic[#,2]]!=1 &] (* Emmanuel Vantieghem, Nov 13 2016 *)
  • PARI
    isok(k) = gcd(polcyclo(k, 2), k) != 1; \\ Michel Marcus, Oct 07 2017
    
  • PARI
    upto(K)=li=List();forprime(p=3,K*log(2)/log(K+1),r=znorder(Mod(2,p))*p;while(r<=K,listput(li,r);r*=p));Set(li) \\ Jeppe Stig Nielsen, Sep 10 2020

Extensions

More terms from Vladeta Jovovic, Apr 03 2004
Definition corrected by Jerry Metzger, Nov 04 2009
Edited by Max Alekseyev, Oct 23 2017

A297412 Numbers k such that A019320(k) is in A217468.

Original entry on oeis.org

43, 114, 163, 258, 326, 379, 487, 758, 762, 883, 974, 978, 1459, 1766, 2274, 2647, 2918, 2922, 3079, 3943, 5294, 5298, 5419, 6158, 7886, 8754, 9199, 10838, 11827, 14407, 15882, 16759, 18398, 18474, 18523, 23654, 23658, 24967, 26407, 28814, 32514, 33518, 37046, 37339, 39367
Offset: 1

Views

Author

Max Alekseyev, Dec 29 2017

Keywords

Crossrefs

Set difference of A297413 and A072226.

Programs

  • PARI
    is_A297412(n) = my(m=polcyclo(n, 2)); Mod(2, m*(m-1))^m==2 && !ispseudoprime(m);

A297413 Numbers k such that 2^m == 2 (mod m*(m-1)), where m=A019320(k).

Original entry on oeis.org

2, 3, 6, 7, 14, 19, 38, 42, 43, 86, 114, 127, 163, 254, 258, 326, 379, 487, 758, 762, 883, 974, 978, 1459, 1766, 2274, 2647, 2918, 2922, 3079, 3943, 5294, 5298, 5419, 6158, 7886, 8754, 9199, 10838, 11827, 14407, 15882, 16759, 18398, 18474, 18523, 23654, 23658, 24967, 26407, 28814, 32514, 33518, 37046, 37339, 39367
Offset: 1

Views

Author

Max Alekseyev, Dec 29 2017

Keywords

Comments

Also, numbers k such that A019320(k) belongs to A069051 or A217468.

Crossrefs

Contains A297412 as a subsequence.

Programs

  • PARI
    is_A297413(k) = my(m=polcyclo(k,2)); Mod(2,m*(m-1))^m==2;

A297414 Numbers k such that 2^m == 2 (mod m*(m+1)), where m = A019320(k).

Original entry on oeis.org

1, 4, 9, 12, 25, 36, 40, 52, 80, 92, 124, 150, 208, 306, 361, 630, 656, 1648, 1780, 2508, 3300, 3540, 5728, 6260, 6450, 7500, 10820, 12656, 14076, 14132, 18836, 20960, 23456, 24272, 35280, 43136
Offset: 1

Views

Author

Max Alekseyev, Dec 29 2017

Keywords

Comments

Also, numbers k such that A019320(k) belongs to A216822.

Crossrefs

Programs

  • PARI
    is_A297414(k) = my(m=polcyclo(k, 2)); Mod(2, m*(m+1))^m==2;

A297415 Numbers k such that A019320(k) is in A217465.

Original entry on oeis.org

25, 36, 52, 92, 124, 306, 361, 630, 656, 1648, 1780, 2508, 3300, 3540, 5728, 6260, 6450, 7500, 10820, 12656, 14076, 14132, 18836, 20960, 23456, 24272, 35280, 43136
Offset: 1

Views

Author

Max Alekseyev, Dec 29 2017

Keywords

Crossrefs

Set difference of A297414 and ({1} U A072226).

Programs

  • PARI
    is_A297415(n) = my(m=polcyclo(n, 2)); (m>1) && Mod(2, m*(m+1))^m==2 && !ispseudoprime(m);

A368424 Numbers k such that gcd(A019320(k), A019321(k)) > 1.

Original entry on oeis.org

4, 11, 18, 20, 23, 28, 35, 43, 48, 52, 83, 95, 100, 119, 131, 138, 148, 155, 162, 166, 172, 179, 191, 196, 204, 210, 214, 239, 251, 253, 268, 292, 299, 300, 316, 323, 342, 359, 371, 378, 388, 419, 431, 443, 460, 463, 491, 500, 508, 515, 537, 556, 564, 575
Offset: 1

Views

Author

Tomohiro Yamada, Dec 24 2023

Keywords

Comments

The corresponding greatest common divisors are given in A368425.

Examples

			a(1) = 4 since A019320(4) = 5 and A019321(4) = 10.
		

Crossrefs

Cf. A019320, A019321, A191609 (prime factors of such gcds), A368425.

Programs

  • Maple
    select(k -> igcd(numtheory:-cyclotomic(k,2),
    numtheory:-cyclotomic(k,3)) > 1, [$1..1000]); # Robert Israel, Dec 26 2023
  • Mathematica
    Select[Range[600],GCD[Cyclotomic[#,2],Cyclotomic[#,3]]>1&] (* Stefano Spezia, Dec 26 2023 *)
  • PARI
    for(n=1,1000,if(gcd(polcyclo(n,2),polcyclo(n,3))>1,print1(n,", ")))

A333973 Numbers k such that A019320(k) is greater than A064078(k) and the latter is a prime or a prime power.

Original entry on oeis.org

18, 20, 21, 54, 147, 342, 602, 889, 258121
Offset: 1

Views

Author

Jeppe Stig Nielsen, Sep 22 2020

Keywords

Comments

The unique prime factor of A064078(k) is then a unique prime to base 2 (see A161509), but not a cyclotomic number.
Subsequence of A161508. In fact, subsequence of the set difference A161508 \ A072226.
In all known examples, A064078(k) is a prime. If A064078(k) was a prime power p^j with j>1, then p would be both a Wieferich prime (A001220) and a unique prime to base 2.
Subsequence of A093106 (the characterization of A093106 can be useful when searching for more terms).
Should this sequence be infinite?

Crossrefs

Programs

  • PARI
    for(n=1,+oo,c=polcyclo(n,2); c % n < 2 && next(); c/=(c%n); ispseudoprime(if(ispower(c,,&b),b,c))&&print1(n, ", "))
Showing 1-10 of 37 results. Next