cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A019320 Cyclotomic polynomials at x=2.

Original entry on oeis.org

2, 1, 3, 7, 5, 31, 3, 127, 17, 73, 11, 2047, 13, 8191, 43, 151, 257, 131071, 57, 524287, 205, 2359, 683, 8388607, 241, 1082401, 2731, 262657, 3277, 536870911, 331, 2147483647, 65537, 599479, 43691, 8727391, 4033, 137438953471, 174763, 9588151, 61681
Offset: 0

Views

Author

Keywords

Crossrefs

a(n) = A063696(n) - A063698(n) for up to n=104.
Same sequence in binary: A063672.

Programs

  • Maple
    with(numtheory,cyclotomic); f := n->subs(x=2,cyclotomic(n,x)); seq(f(i),i=0..64);
  • Mathematica
    Join[{2}, Table[Cyclotomic[n, 2], {n, 1, 40}]] (* Jean-François Alcover, Jun 14 2013 *)
  • PARI
    vector(20,n,polcyclo(n,2)) \\ Charles R Greathouse IV, May 18 2011

Formula

(lcm_{k=1..n} (2^k - 1))/lcm_{k=1..n-1} (2^k - 1), n > 1. - Vladeta Jovovic, Jan 20 2002
Let b(1) = 1 and b(n+1) = lcm(b(n), 2^n-1) then Phi(n,2) = b(n+1)/b(n) = a(n). - Thomas Ordowski, May 08 2013
a(0) = 2; for n > 0, a(n) = (2^n-1)/gcd(a(0)*a(1)*...*a(n-1), 2^n-1). - Thomas Ordowski, May 11 2013

A063697 Positions of positive coefficients in cyclotomic polynomial Phi_n(x), A063696 in binary.

Original entry on oeis.org

0, 10, 11, 111, 101, 11111, 101, 1111111, 10001, 1001001, 10101, 11111111111, 10001, 1111111111111, 1010101, 100101001, 100000001, 11111111111111111, 1000001, 1111111111111111111, 100010001, 1001001001001, 10101010101
Offset: 0

Views

Author

Antti Karttunen, Aug 03 2001

Keywords

Examples

			Phi_15(x) = x^8 - x^7 + x^5 - x^4 + x^3 - x + 1, thus the 1-bits of a(15) are at positions 0,3,5 and 8, thus we get a(15) = 100101001
		

Crossrefs

Programs

  • Maple
    map(convert, A063696,binary);

Extensions

a(0) corrected by Sean A. Irvine, May 08 2023

A063671 Positions of nonzero coefficients in cyclotomic polynomial Phi_n(x), A063670 in binary.

Original entry on oeis.org

10, 11, 11, 111, 101, 11111, 111, 1111111, 10001, 1001001, 11111, 11111111111, 10101, 1111111111111, 1111111, 110111011, 100000001, 11111111111111111, 1001001, 1111111111111111111, 101010101, 1101101011011, 11111111111
Offset: 0

Views

Author

Antti Karttunen, Aug 03 2001

Keywords

Comments

a(0) could also be 1. - T. D. Noe, Oct 29 2007

Examples

			Phi_15(x) = x^8 - x^7 + x^5 - x^4 + x^3 - x + 1, thus the 1-bits of a(15) are at positions 0,1,3,4,5,7 and 8, thus we get a(15) = 110111011.
		

Crossrefs

Programs

  • Maple
    map(convert, A063670,binary);
  • Mathematica
    a[n_] := FromDigits[Abs[CoefficientList[Cyclotomic[n, x], x]]]; a[0]=10;Table[a[n], {n, 0, 22}] (* Jean-François Alcover, Nov 02 2016 *)

Formula

a(n) = A063697(n) (the positive terms) + A063699(n) (the negative terms) (computed in any base, up to n=104).

A063699 Positions of negative coefficients in cyclotomic polynomial Phi_n(x), A063698 in binary.

Original entry on oeis.org

0, 1, 0, 0, 0, 0, 10, 0, 0, 0, 1010, 0, 100, 0, 101010, 10010010, 0, 0, 1000, 0, 1000100, 100100010010, 1010101010, 0, 10000, 0, 101010101010, 0, 10001000100, 0, 111000, 0, 0, 10010010010010010010, 1010101010101010, 100001010010100101000010
Offset: 0

Views

Author

Antti Karttunen, Aug 03 2001

Keywords

Examples

			E.g. Phi_15(x) = x^8 - x^7 + x^5 - x^4 + x^3 - x + 1, thus the 1-bits of a(15) are at positions 1,4 and 7, thus we get a(15) = 10010010
		

Crossrefs

Programs

  • Maple
    map(convert, A063698,binary);

A252502 Number of digits of Phi_n(10), or number of digits in base b of Phi_n(b), where Phi is the cyclotomic polynomial.

Original entry on oeis.org

1, 2, 3, 3, 5, 2, 7, 5, 7, 4, 11, 4, 13, 6, 8, 9, 17, 6, 19, 8, 12, 10, 23, 8, 21, 12, 19, 12, 29, 9, 31, 17, 20, 16, 24, 12, 37, 18, 24, 16, 41, 13, 43, 20, 24, 22, 47, 16, 43, 20, 32, 24, 53, 18, 40, 24, 36, 28, 59, 17, 61, 30, 36, 33, 48, 21, 67, 32, 44, 25, 71, 24
Offset: 1

Views

Author

Eric Chen, Dec 17 2014

Keywords

Comments

a(n) = phi(n) if and only if the number of distinct prime factors of n (A001221(n)) is even, a(n) = phi(n) + 1 if and only if the number of distinct prime factors of n (A001221(n)) is odd, where phi is Euler's totient function.

Examples

			Values of phi_n(b) written in base b are #, 11, 111, 101, 11111, #1, 1111111, 10001, 1001001, #0#1, 11111111111, ##01, ..., where # represents b - 1.
		

Crossrefs

Programs

  • Mathematica
    a252502[n_] := Array[Total@DigitCount[Cyclotomic[#, 10]] &, n]; a252502[72] (* Michael De Vlieger, Dec 21 2014 *)
Showing 1-5 of 5 results.