cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A211242 Order of 6 mod n-th prime: least k such that prime(n) divides 6^k-1.

Original entry on oeis.org

0, 0, 1, 2, 10, 12, 16, 9, 11, 14, 6, 4, 40, 3, 23, 26, 58, 60, 33, 35, 36, 78, 82, 88, 12, 10, 102, 106, 108, 112, 126, 130, 136, 23, 37, 150, 156, 27, 83, 43, 178, 60, 19, 96, 14, 198, 105, 222, 226, 228, 232, 17, 20, 250, 256, 131, 134, 270, 276, 56, 141
Offset: 1

Views

Author

T. D. Noe, Apr 11 2012

Keywords

Crossrefs

Cf. A019336 (full reptend primes in base 6).

Programs

  • GAP
    A000040:=Filtered([1..350],IsPrime);;
    List([1..Length(A000040)],n->OrderMod(6,A000040[n])); # Muniru A Asiru, Feb 06 2019
    
  • Maple
    A211242 := proc(n)
        if n<= 2 then
            0 ;
        else
            numtheory[order](6,ithprime(n)) ;
        end if;
    end proc:
    seq(A211242(n),n=1..80) ; # R. J. Mathar, Jul 17 2024
  • Mathematica
    nn = 6; Table[If[Mod[nn, p] == 0, 0, MultiplicativeOrder[nn, p]], {p, Prime[Range[100]]}]
  • PARI
    a(n,{base=6}) = my(p=prime(n)); if(base%p, znorder(Mod(base,p)), 0) \\ Jianing Song, May 13 2024

A167794 Numbers with primitive root 6.

Original entry on oeis.org

11, 13, 17, 41, 59, 61, 79, 83, 89, 103, 107, 109, 113, 121, 127, 131, 137, 151, 157, 169, 179, 199, 223, 227, 229, 233, 251, 257, 271, 277, 289, 347, 367, 373, 397, 401, 419, 443, 449, 467, 487, 491, 521, 563, 569, 587, 593, 613, 641, 659, 661, 683, 709, 733
Offset: 1

Views

Author

T. D. Noe, Nov 12 2009

Keywords

Crossrefs

Cf. A019336 (primes with primitive root 6). Subsequence of A033948.

Programs

  • Maple
    A167794 := proc(n)
        option remember;
        if n =1 then
            11;
        else
            for a from procname(n-1)+1 do
                if numtheory[order](6,a) = numtheory[phi](a) then
                    return a;
                end if;
            end do:
        end if;
    end proc:
    seq(A167794(n),n=1..80) ; # R. J. Mathar, Sep 15 2021
  • Mathematica
    pr=6; Select[Range[2,2000], MultiplicativeOrder[pr,# ] == EulerPhi[ # ] &]
  • PARI
    is(n)=if(gcd(n, 6)>1, return(0)); my(p=eulerphi(n)); znorder(Mod(6, n), p)==p \\ Charles R Greathouse IV, Jan 04 2025

A320384 Primes p such that 3/2 is a primitive root modulo p.

Original entry on oeis.org

7, 11, 17, 31, 37, 41, 59, 83, 89, 103, 107, 109, 113, 127, 131, 137, 151, 157, 179, 223, 227, 229, 233, 251, 257, 271, 277, 347, 349, 353, 367, 397, 421, 443, 449, 467, 491, 521, 541, 563, 569, 587, 593, 607, 613, 631, 641, 659, 661, 683, 733, 757, 761, 809, 827, 853, 857, 877, 929, 953, 967, 971, 977, 991
Offset: 1

Views

Author

Jianing Song, Oct 12 2018

Keywords

Comments

Primes p such that the smallest positive k such that p divides 3^k - 2^k is p - 1.
All terms are congruent to 7, 11, 13, 17 modulo 24. For other primes p, 3/2 is a quadratic residue modulo p.
By Artin's conjecture, this sequence contains 37.395% of all primes, or 74.79% of all primes congruent to 7, 11, 13, 17 modulo 24.

Examples

			3/2 == 5 (mod 7), 5 is a primitive root modulo 7, so 7 is a term. Indeed, 7 does not divide 3^2 - 2^2 or 3^3 - 2^3, but it divides 3^6 - 2^6.
3/2 == 7 (mod 11), 7 is a primitive root modulo 11, so 11 is a term. Indeed, 11 does not divide 3^2 - 2^2 or 3^5 - 2^5, but it divides 3^10 - 2^10.
3/2 == 13 (mod 23), 13^11 == 1 (mod 23), so 23 is not a term. Indeed, 23 divides 3^11 - 2^11.
		

Crossrefs

Programs

  • PARI
    forprime(p=5,10^3,if(p-1==znorder(Mod(3/2,p)),print1(p,", "))); \\ Joerg Arndt, Oct 13 2018
Showing 1-3 of 3 results.