A019428 Continued fraction for tan(1/5).
0, 4, 1, 13, 1, 23, 1, 33, 1, 43, 1, 53, 1, 63, 1, 73, 1, 83, 1, 93, 1, 103, 1, 113, 1, 123, 1, 133, 1, 143, 1, 153, 1, 163, 1, 173, 1, 183, 1, 193, 1, 203, 1, 213, 1, 223, 1, 233, 1, 243, 1, 253, 1, 263, 1, 273, 1, 283, 1, 293, 1, 303, 1, 313, 1, 323, 1, 333, 1, 343, 1, 353, 1, 363, 1
Offset: 0
Examples
0.20271003550867248332135827... = 0 + 1/(4 + 1/(1 + 1/(13 + 1/(1 + ...)))). - _Harry J. Smith_, Jun 13 2009
Links
- Harry J. Smith, Table of n, a(n) for n = 0..20000
- G. Xiao, Contfrac
- Index entries for linear recurrences with constant coefficients, signature (0,2,0,-1).
Programs
-
Magma
[0,4] cat [(-1+3*(-1)^n-5*(-1+(-1)^n)*n)/2: n in [2..80]]; // Vincenzo Librandi, Jan 03 2016
-
Mathematica
Join[{0, 4}, LinearRecurrence[{0, 2, 0, -1}, {1, 13, 1, 23}, 100]] (* Vincenzo Librandi, Jan 03 2016 *)
-
PARI
{ allocatemem(932245000); default(realprecision, 93000); x=contfrac(tan(1/5)); for (n=0, 20000, write("b019428.txt", n, " ", x[n+1])); } \\ Harry J. Smith, Jun 13 2009
-
PARI
Vec(x*(x^4-x^3+5*x^2+x+4)/((x-1)^2*(x+1)^2) + O(x^100)) \\ Colin Barker, Sep 08 2013
Formula
From Colin Barker, Sep 08 2013: (Start)
a(n) = (-1 + 3*(-1)^n - 5*(-1 + (-1)^n)*n)/2 for n > 1.
a(n) = 2*a(n-2) - a(n-4) for n > 5.
G.f.: x*(x^4-x^3+5*x^2+x+4) / ((x-1)^2*(x+1)^2). (End)
Comments