cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A019429 Continued fraction for tan(1/6).

Original entry on oeis.org

0, 5, 1, 16, 1, 28, 1, 40, 1, 52, 1, 64, 1, 76, 1, 88, 1, 100, 1, 112, 1, 124, 1, 136, 1, 148, 1, 160, 1, 172, 1, 184, 1, 196, 1, 208, 1, 220, 1, 232, 1, 244, 1, 256, 1, 268, 1, 280, 1, 292, 1, 304, 1, 316, 1, 328, 1, 340, 1, 352, 1, 364, 1, 376, 1, 388, 1, 400, 1, 412, 1, 424, 1, 436, 1
Offset: 0

Views

Author

Keywords

Examples

			0.16822721830224246125721608... = 0 + 1/(5 + 1/(1 + 1/(16 + 1/(1 + ...)))). - _Harry J. Smith_, Jun 13 2009
		

Crossrefs

Cf. A161015 (decimal expansion). Cf. A019426 through A019433.

Programs

  • Mathematica
    Block[{$MaxExtraPrecision=1000},ContinuedFraction[Tan[1/6],100]] (* Harvey P. Dale, May 14 2014 *)
  • PARI
    { allocatemem(932245000); default(realprecision, 95000); x=contfrac(tan(1/6)); for (n=0, 20000, write("b019429.txt", n, " ", x[n+1])); } \\ Harry J. Smith, Jun 13 2009

Formula

Conjecture: a(n) = (-1+3*(-1)^n-6*(-1+(-1)^n)*n)/2 for n>1. a(n) = 2*a(n-2)-a(n-4) for n>5. G.f.: x*(x^4-x^3+6*x^2+x+5) / ((x-1)^2*(x+1)^2). - Colin Barker, May 28 2013
From Peter Bala, Nov 18 2019: (Start)
a(2*n) = 1 and a(2*n+1) = 12*n + 4, both for n >= 1.
The above conjectures are correct. The simple continued fraction expansion for tan(1/6) may be derived by setting z = 1/6 in Lambert's continued fraction tan(z) = z/(1 - z^2/(3 - z^2/(5 - ... ))) and then, after using an equivalence transformation, making repeated use of the identity 1/(n - 1/m) = 1/((n - 1) + 1/(1 + 1/(m - 1))).
A similar approach produces the related simple continued fraction expansions
2*tan(1/6) = [0, 2, 1, 34, 1, 13, 1, 82, 1, 25, 1, 130, 1, 37, 1, 178, 1, 49, ...], with denominators c(2*n) = 1, c(4*n+1) = 12*n + 1, both for n >= 1, and c(4*n+3) = 48*n + 34 for n >= 0;
3*tan(1/6) = [0; 1, 1, 52, 1, 8, 1, 124, 1, 16, 1, 196, 1, 24, 1, 268, 1, 32, ...];
6*tan(1/6) = [1; 106, 1, 3, 1, 250, 1, 7, 1, 394, 1, 11, 1, 538, 1, 15, 1, 682,..];
(1/2)*tan(1/6) = [0, 11, 1, 7, 1, 58, 1, 19, 1, 106, 1, 31, 1, 154, 1, 43, 1, ...];
(1/3)*tan(1/6) = [0, 17, 1, 4, 1, 88, 1, 12, 1, 160, 1, 20, 1, 232, 1, 28, 1, ...];
(1/6)*tan(1/6) = [0, 35, 1, 1, 1, 178, 1, 5, 1, 322, 1, 9, 1, 466, 1, 13, 1, ...];
(End)