cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A019432 Continued fraction for tan(1/9).

Original entry on oeis.org

0, 8, 1, 25, 1, 43, 1, 61, 1, 79, 1, 97, 1, 115, 1, 133, 1, 151, 1, 169, 1, 187, 1, 205, 1, 223, 1, 241, 1, 259, 1, 277, 1, 295, 1, 313, 1, 331, 1, 349, 1, 367, 1, 385, 1, 403, 1, 421, 1, 439, 1, 457, 1, 475, 1, 493, 1, 511, 1, 529, 1, 547, 1, 565, 1, 583, 1, 601, 1, 619, 1, 637, 1, 655
Offset: 0

Views

Author

Keywords

Comments

The odd-indexed terms from and after a(3) are equal to 18n+7. - Harvey P. Dale, Sep 26 2021

Examples

			0.11157062783380058372650480... = 0 + 1/(8 + 1/(1 + 1/(25 + 1/(1 + ...)))). - _Harry J. Smith_, Jun 14 2009
		

Crossrefs

Cf. A161018 (decimal expansion), A019425 through A019433.

Programs

  • Mathematica
    Block[{$MaxExtraPrecision=1000}, ContinuedFraction[Tan[1/9],100]] (* or *) LinearRecurrence[{0,2,0,-1},{0,8,1,25,1,43},80] (* Harvey P. Dale, Sep 26 2021 *)
  • PARI
    { allocatemem(932245000); default(realprecision, 98000); x=contfrac(tan(1/9)); for (n=0, 20000, write("b019432.txt", n, " ", x[n+1])); } \\ Harry J. Smith, Jun 14 2009
    
  • PARI
    Vec(x*(x^4-x^3+9*x^2+x+8)/((x-1)^2*(x+1)^2) + O(x^100)) \\ Colin Barker, Sep 08 2013

Formula

From Colin Barker, Sep 08 2013: (Start)
a(n) = (-1+3*(-1)^n-9*(-1+(-1)^n)*n)/2 for n>1.
a(n) = 2*a(n-2)-a(n-4) for n>5.
G.f.: x*(x^4-x^3+9*x^2+x+8) / ((x-1)^2*(x+1)^2). (End)