cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A019433 Continued fraction for tan(1/10).

Original entry on oeis.org

0, 9, 1, 28, 1, 48, 1, 68, 1, 88, 1, 108, 1, 128, 1, 148, 1, 168, 1, 188, 1, 208, 1, 228, 1, 248, 1, 268, 1, 288, 1, 308, 1, 328, 1, 348, 1, 368, 1, 388, 1, 408, 1, 428, 1, 448, 1, 468, 1, 488, 1, 508, 1, 528, 1, 548, 1, 568, 1, 588, 1, 608, 1, 628, 1, 648, 1, 668, 1, 688, 1, 708, 1, 728
Offset: 0

Views

Author

Keywords

Comments

From Peter Bala, Oct 04 2023: (Start)
Related simple continued fractions expansions (see my comments in A019425):
tan(1/(10*k)) = [0; 10*k - 1, 1, 30*k - 2, 1, 50*k - 2, 1, 70*k - 2, 1, 90*k - 2, 1, ...] for k >= 1.
If d is a divisor of 10 with d*d' = 10 then the simple continued fraction expansion of d*tan(1/10) begins [0; d' - 1, 1, 30*d - 2, 1, 5*d' - 2, 1, 70*d - 2, 1, 9*d' - 2, 1, 110*d - 2, 1, 13*d' - 2, ...], while the simple continued fraction expansion of (1/d)*tan(1/10) begins [ 0; 10*d - 1, 1, 3*d'- 2, 1, 50*d - 2, 1, 7*d' - 2, 1, 90*d - 2, 1, 11*d' - 2, 1, 130*d - 2, ...]. (End)

Examples

			0.10033467208545054505808004... = 0 + 1/(9 + 1/(1 + 1/(28 + 1/(1 + ...)))). - _Harry J. Smith_, Jun 14 2009
		

Crossrefs

Cf. A161019 (decimal expansion), A019425 through A019432.

Programs

  • Mathematica
    LinearRecurrence[{0,2,0,-1},{0,9,1,28,1,48},80] (* or *) Join[{0,9},Riffle[NestList[20+#&,28,40],1,{1,-1,2}]] (* Harvey P. Dale, Jul 23 2023 *)
  • PARI
    { allocatemem(932245000); default(realprecision, 99000); x=contfrac(tan(1/10)); for (n=0, 20000, write("b019433.txt", n, " ", x[n+1])); } \\ Harry J. Smith, Jun 14 2009
    
  • PARI
    Vec(x*(x^4-x^3+10*x^2+x+9)/((x-1)^2*(x+1)^2) + O(x^100)) \\ Colin Barker, Sep 08 2013

Formula

From Colin Barker, Sep 08 2013: (Start)
a(n) = -1/2+(3*(-1)^n)/2+5*n-5*(-1)^n*n for n>1.
a(n) = 2*a(n-2)-a(n-4) for n>5.
G.f.: x*(x^4-x^3+10*x^2+x+9) / ((x-1)^2*(x+1)^2). (End)

A019426 Continued fraction for tan(1/3).

Original entry on oeis.org

0, 2, 1, 7, 1, 13, 1, 19, 1, 25, 1, 31, 1, 37, 1, 43, 1, 49, 1, 55, 1, 61, 1, 67, 1, 73, 1, 79, 1, 85, 1, 91, 1, 97, 1, 103, 1, 109, 1, 115, 1, 121, 1, 127, 1, 133, 1, 139, 1, 145, 1, 151, 1, 157, 1, 163, 1, 169, 1, 175, 1, 181, 1, 187, 1, 193, 1, 199, 1, 205, 1, 211, 1, 217, 1, 223, 1
Offset: 0

Views

Author

Keywords

Comments

The simple continued fraction expansion of 3*tan(1/3) is [1; 25, 1, 3, 1, 61, 1, 7, 1, 97, 1, 11, 1, ..., 36*n + 25, 1, 4*n + 3, 1, ...], while the simple continued fraction expansion of (1/3)*tan(1/3) is [0; 8, 1, 1, 1, 43, 1, 5, 1, 79, 1, 9, 1, 115, 1, 13, 1, ..., 36*n + 7, 1, 4*n + 1, 1, ...]. See my comment in A019425. - Peter Bala, Sep 30 2023

Examples

			0.346253549510575491038543565... = 0 + 1/(2 + 1/(1 + 1/(7 + 1/(1 + ...)))). - _Harry J. Smith_, Jun 13 2009
		

Crossrefs

Cf. A161012 (decimal expansion of tan(1/3)).
Cf. continued fractions for tan(1/m): A019425 (m=2), A019427 (m=4), A019428 (m=5), A019429 (m=6), A019430 (m=7), A019431 (m=8), A019432 (m=9), A019433 (m=10), A093178 (m=1).

Programs

  • Magma
    [n le 1 select 2*n else 1+3*(1-(-1)^n)*(n-1)/2: n in [0..80]]; // Bruno Berselli, Sep 21 2012
  • Mathematica
    ContinuedFraction[Tan[1/3], 80] (* Bruno Berselli, Sep 21 2012 *)
  • PARI
    { allocatemem(932245000); default(realprecision, 88000); x=contfrac(tan(1/3)); for (n=0, 20000, write("b019426.txt", n, " ", x[n+1])); } \\ Harry J. Smith, Jun 13 2009
    

Formula

From Bruno Berselli, Sep 21 2012: (Start)
G.f.: x*(2+x+3*x^2-x^3+x^4)/(1-x^2)^2.
a(n) = 2*a(n-2)-a(n-4) with n>4, a(0)=0, a(1)=2, a(2)=1, a(3)=7, a(4)=1.
a(n) = 1+3*(1-(-1)^n)*(n-1)/2 with n>1, a(0)=0, a(1)=2.
For k>0: a(2k) = 1, a(4k+1) = 2*a(2k+1)-1 and a(4k+3) = 2*a(2k+1)+5, with a(0)=0, a(1)=2. (End)

A161018 Decimal expansion of tan(1/9).

Original entry on oeis.org

1, 1, 1, 5, 7, 0, 6, 2, 7, 8, 3, 3, 8, 0, 0, 5, 8, 3, 7, 2, 6, 5, 0, 4, 8, 0, 0, 2, 4, 9, 8, 2, 9, 4, 6, 4, 5, 0, 2, 5, 4, 9, 2, 3, 4, 1, 2, 7, 7, 4, 0, 0, 7, 3, 1, 1, 1, 7, 6, 8, 4, 7, 2, 5, 0, 7, 6, 3, 7, 2, 3, 9, 4, 8, 2, 2, 3, 5, 8, 5, 2, 3, 5, 7, 9, 4, 1, 4, 5, 7, 4, 1, 1, 0, 6, 6, 1, 3, 2, 8, 4, 0, 7, 8, 6
Offset: 0

Views

Author

Harry J. Smith, Jun 14 2009

Keywords

Comments

By the Lindemann-Weierstrass theorem, this constant is transcendental. - Charles R Greathouse IV, May 13 2019

Examples

			0.111570627833800583726504800249829464502549234127740073111768472507637...
		

Crossrefs

Cf. A019432 (continued fraction).

Programs

  • Mathematica
    RealDigits[Tan[1/9], 10, 120][[1]] (* Amiram Eldar, Jun 27 2023 *)
  • PARI
    default(realprecision, 20080); x=10*tan(1/9); for (n=0, 20000, d=floor(x); x=(x-d)*10; write("b161018.txt", n, " ", d));
Showing 1-3 of 3 results.