A019460 Add 1, multiply by 1, add 2, multiply by 2, etc., start with 2.
2, 3, 3, 5, 10, 13, 39, 43, 172, 177, 885, 891, 5346, 5353, 37471, 37479, 299832, 299841, 2698569, 2698579, 26985790, 26985801, 296843811, 296843823, 3562125876, 3562125889, 46307636557, 46307636571, 648306911994, 648306912009, 9724603680135, 9724603680151, 155593658882416
Offset: 0
References
- New York Times, Oct 13, 1996.
Links
- Ivan Panchenko, Table of n, a(n) for n = 0..200
- Nick Hobson, Python program for this sequence
Crossrefs
Programs
-
Mathematica
a[n_] := If[ OddQ@n, a[n - 1] + (n + 1)/2, a[n - 1]*n/2]; a[0] = 2; Table[ a@n, {n, 0, 28}] (* Robert G. Wilson v, Jul 21 2009 *)
-
PARI
A019460(n)=2*(A000522(n\2)+(n\2)!)-if(bittest(n,0),1,n\2+2) /* For producing the terms in increasing order, the following 'hack' can be used M. F. Hasler, Jan 12 2011 */ lastn=0; an1=1; A000522(n)={ an1=if(n, n==lastn && return(an1); n==lastn+1||error(); an1*lastn=n)+1 }
-
Python
l=[2] for n in range(1, 101): l.append(l[n - 1] + ((n + 1)//2) if n%2 else l[n - 1]*(n//2)) print(l) # Indranil Ghosh, Jul 05 2017
Formula
a(2n) = 2*(A000522(n) + n!) - n - 2.
a(2n+1) = 2*(A000522(n) + n!) - 1.
Recursive: a(0) = 2, a(n) = (1 + floor((n-1)/2) - ceiling((n-1)/2))*(a(n-1) + (n+2)/2) + (ceiling((n-1)/2) - floor((n-1)/2))*(n/2)*a(n-1). - Wesley Ivan Hurt, Jan 12 2013
Extensions
One more term from Robert G. Wilson v, Jul 21 2009
Formula provided by Nathaniel Johnston, Nov 11 2010
Formula double-checked and PARI code added by M. F. Hasler, Nov 12 2010
Edited by M. F. Hasler, Feb 25 2018
Comments