cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A019537 Number of special orbits for dihedral group of degree n.

Original entry on oeis.org

1, 2, 4, 14, 61, 414, 3416, 34274, 394009, 5113712, 73758368, 1170495180, 20263806277, 380048113202, 7676106638884, 166114210737254, 3834434327929981, 94042629562443206, 2442147034770292496, 66942194906543381336, 1931543452346146410965, 58519191359170883258606
Offset: 1

Views

Author

Manfred Goebel (goebel(AT)informatik.uni-tuebingen.de)

Keywords

Comments

a(n) is the number of ways to color a necklace of n beads using at most n colors. Turning the necklace over does not count as different. - Robert A. Russell, May 31 2018

Examples

			For a(3) = 4, the necklaces are AAA, AAB, ABB, and ABC. Last one is chiral. For a(4) = 14, the necklacess are AAAA, AAAB, AABB, ABAB, ABBB, ABAC, ABCB, ACBC, AABC, ABBC, ABCC, ABCD, ABDC, and ACBD. Last six are chiral. - _Robert A. Russell_, May 31 2018
		

Crossrefs

Cf. A019536.
Row sums of A273891.

Programs

  • Mathematica
    Table[Sum[(k!/(2n)) DivisorSum[n, EulerPhi[#] StirlingS2[n/#,k] &] + (k!/4) (StirlingS2[Floor[(n+1)/2],k] + StirlingS2[Ceiling[(n+1)/2],k]), {k, 1, n}], {n, 1, 40}] (* Robert A. Russell, May 31 2018 *)
  • PARI
    a(n) = sum(k=1, n, (k!/4)*(stirling(floor((n+1)/2),k,2) + stirling(ceil((n+1)/2),k,2)) + (k!/(2*n))*sumdiv(n, d, eulerphi(d)*stirling(n/d,k,2))); \\ Michel Marcus, Jun 06 2018

Formula

a(n) = Sum_{k=1..n} ((k!/4)*(S2(floor((n+1)/2),k) + S2(ceiling((n+1)/2),k)) + (k!/(2 n))*Sum_{d|n} phi(d)*S2(n/d,k)), where S2(n,k) is the Stirling subset number A008277. - Robert A. Russell, May 31 2018
a(n) ~ (n-1)! / (4 * log(2)^(n+1)). - Vaclav Kotesovec, Jul 21 2019

Extensions

More terms (using A273891) from Alois P. Heinz, Jun 02 2016