A019550 a(n) is the concatenation of n and 2n.
12, 24, 36, 48, 510, 612, 714, 816, 918, 1020, 1122, 1224, 1326, 1428, 1530, 1632, 1734, 1836, 1938, 2040, 2142, 2244, 2346, 2448, 2550, 2652, 2754, 2856, 2958, 3060, 3162, 3264, 3366, 3468, 3570, 3672, 3774, 3876, 3978, 4080, 4182, 4284, 4386, 4488, 4590
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Sylvester Smith, A Set of Conjectures on Smarandache Sequences, Bulletin of Pure and Applied Sciences, (Bombay, India), Vol. 15 E (No. 1), 1996, pp. 101-107.
Crossrefs
Programs
-
Magma
[Seqint(Intseq(2*n) cat Intseq(n)): n in [1..50]]; // Vincenzo Librandi, Feb 04 2014
-
Maple
seq(n*(10^(1+ilog10(2*n))+2),n=1..100); # Robert Israel, Sep 21 2015
-
Mathematica
nxt[n_]:=Module[{idn=IntegerDigits[n],idn2=IntegerDigits[2n]}, FromDigits[ Join[ idn,idn2]]]; Array[nxt,40] (* Harvey P. Dale, Sep 13 2011 *)
-
PARI
a(n) = eval(Str(n, 2*n)); \\ Michel Marcus, Sep 21 2015
-
Python
def a(n): return int(str(n) + str(2*n)) print([a(n) for n in range(1, 46)]) # Michael S. Branicky, Dec 24 2021
Formula
From Robert Israel, Sep 21 2015 (Start)
G.f.: (6*(2*x+75*x^5-60*x^6) + 90*Sum_{k>=1} 10^k*x^(5*10^k)*(5*10^k - (5*10^k-1)*x))/(1-x)^2.
a(n+2) - 2*a(n+1) + a(n) = 45*10^(2*k+1) if n = 5*10^k-2, 90*10^k-450*10^(2*k) if n = 5*10^k-1, 0 otherwise. (End)
Extensions
Offset changed from 0 to 1 by Vincenzo Librandi, Feb 04 2014
Comments