cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A019550 a(n) is the concatenation of n and 2n.

Original entry on oeis.org

12, 24, 36, 48, 510, 612, 714, 816, 918, 1020, 1122, 1224, 1326, 1428, 1530, 1632, 1734, 1836, 1938, 2040, 2142, 2244, 2346, 2448, 2550, 2652, 2754, 2856, 2958, 3060, 3162, 3264, 3366, 3468, 3570, 3672, 3774, 3876, 3978, 4080, 4182, 4284, 4386, 4488, 4590
Offset: 1

Views

Author

R. Muller

Keywords

Comments

Concatenation of digits of n and 2*n. - Harvey P. Dale, Sep 13 2011
All terms are divisible by 6. - Robert Israel, Sep 21 2015

Crossrefs

Cf. concatenation of n and k*n: A020338 (k=1), this sequence (k=2), A019551 (k=3), A019552 (k=4), A019553 (k=5), A009440 (k=6), A009441 (k=7), A009470 (k=8), A009474 (k=9).
Cf. A235497.
Supersequence of A117304.

Programs

  • Magma
    [Seqint(Intseq(2*n) cat Intseq(n)): n in [1..50]]; // Vincenzo Librandi, Feb 04 2014
    
  • Maple
    seq(n*(10^(1+ilog10(2*n))+2),n=1..100); # Robert Israel, Sep 21 2015
  • Mathematica
    nxt[n_]:=Module[{idn=IntegerDigits[n],idn2=IntegerDigits[2n]}, FromDigits[ Join[ idn,idn2]]]; Array[nxt,40] (* Harvey P. Dale, Sep 13 2011 *)
  • PARI
    a(n) = eval(Str(n, 2*n)); \\ Michel Marcus, Sep 21 2015
    
  • Python
    def a(n): return int(str(n) + str(2*n))
    print([a(n) for n in range(1, 46)]) # Michael S. Branicky, Dec 24 2021

Formula

From Robert Israel, Sep 21 2015 (Start)
G.f.: (6*(2*x+75*x^5-60*x^6) + 90*Sum_{k>=1} 10^k*x^(5*10^k)*(5*10^k - (5*10^k-1)*x))/(1-x)^2.
a(n+2) - 2*a(n+1) + a(n) = 45*10^(2*k+1) if n = 5*10^k-2, 90*10^k-450*10^(2*k) if n = 5*10^k-1, 0 otherwise. (End)

Extensions

Offset changed from 0 to 1 by Vincenzo Librandi, Feb 04 2014