cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A061085 a(n) = A019550(n) / 3.

Original entry on oeis.org

4, 8, 12, 16, 170, 204, 238, 272, 306, 340, 374, 408, 442, 476, 510, 544, 578, 612, 646, 680, 714, 748, 782, 816, 850, 884, 918, 952, 986, 1020, 1054, 1088, 1122, 1156, 1190, 1224, 1258, 1292, 1326, 1360, 1394, 1428, 1462, 1496, 1530, 1564, 1598, 1632, 1666
Offset: 1

Views

Author

Amarnath Murthy, Apr 19 2001

Keywords

Examples

			a(8) = 272 = 816/3, where 816 is 8 concatenated with 16.
		

Crossrefs

Cf. A019550.

Programs

  • Maple
    cat2 := proc(a,b) dgsb := max(1,ilog10(b)+1) ; a*10^dgsb+b ; end proc:
    A019550 := proc(n) cat2(n,2*n) ; end proc:
    A061085 := proc(n) A019550(n)/3 ; end proc: seq(A061085(n),n=1..80) ; # R. J. Mathar, Oct 10 2010
  • Mathematica
    Table[FromDigits[Join[IntegerDigits[n],IntegerDigits[2n]]]/3,{n,50}] (* Harvey P. Dale, Aug 18 2012 *)

Formula

a(n) = one-third of the number obtained by concatenating n with 2n.

Extensions

Offset corrected and sequence extended by R. J. Mathar, Oct 10 2010

A020338 Doublets: base-10 representation is the juxtaposition of two identical strings.

Original entry on oeis.org

11, 22, 33, 44, 55, 66, 77, 88, 99, 1010, 1111, 1212, 1313, 1414, 1515, 1616, 1717, 1818, 1919, 2020, 2121, 2222, 2323, 2424, 2525, 2626, 2727, 2828, 2929, 3030, 3131, 3232, 3333, 3434, 3535, 3636, 3737, 3838, 3939, 4040, 4141, 4242, 4343, 4444, 4545, 4646
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. concatenation of n and k*n: this sequence (k=1), A019550 (k=2), A019551 (k=3), A019552 (k=4), A019553 (k=5), A009440 (k=6), A009441 (k=7), A009470 (k=8), A009474 (k=9).

Programs

  • GAP
    Flat(List([1..2],d->List([10^(d-1)..10^d-1],n->(10^d+1)*n))); # Muniru A Asiru, Mar 31 2018
  • Haskell
    a020338 n = read (ns ++ ns) :: Integer  where ns = show n
    -- Reinhard Zumkeller, Jun 07 2015
    
  • Magma
    [Seqint(Intseq(n) cat Intseq(n)): n in [1..46]]; // Bruno Berselli, Mar 20 2013
    
  • Maple
    seq(seq((10^d+1)*n, n = 10^(d-1)..10^d-1),d=1..3); # Robert Israel, Jan 02 2015
  • Mathematica
    nxt[n_]:=Module[{idn=IntegerDigits[n], idn1=IntegerDigits[n]}, FromDigits[Join[idn, idn1]]];Array[nxt, 100] (* Vincenzo Librandi, Feb 04 2014 *)
  • PARI
    a(n) = eval(Str(n,n)); \\ Michel Marcus, Sep 10 2015
    
  • Sage
    [int(str(n)+str(n)) for n in range(1,47)] # Danny Rorabaugh, Oct 10 2015
    

Formula

a(n) = n*10^(A004216(n)+1) + n. - Reinhard Zumkeller, Aug 11 2007
G.f.: 11*x/(1-x)^2 - Sum_{d >= 1} 9*x^(10^d)*(100^d*x-10^d*x-100^d)/(1-x)^2. - Robert Israel, Jan 02 2015
a(n) = n || n. (Where "||" denotes "concatenate". See link "Concatenation".) - Halfdan Skjerning, Apr 01 2018

A009470 a(n) is the concatenation of n and 8n.

Original entry on oeis.org

18, 216, 324, 432, 540, 648, 756, 864, 972, 1080, 1188, 1296, 13104, 14112, 15120, 16128, 17136, 18144, 19152, 20160, 21168, 22176, 23184, 24192, 25200, 26208, 27216, 28224, 29232, 30240, 31248, 32256, 33264, 34272, 35280, 36288, 37296, 38304, 39312
Offset: 1

Views

Author

Keywords

Comments

All terms are divisible by 9. - Michel Marcus, Sep 21 2015

Crossrefs

Cf. concatenation of n and k*n: A020338 (k=1), A019550 (k=2), A019551 (k=3), A019552 (k=4), A019553 (k=5), A009440 (k=6), A009441 (k=7), this sequence (k=8), A009474 (k=9).

Programs

  • Magma
    [Seqint(Intseq(8*n) cat Intseq(n)): n in [1..50]]; // Vincenzo Librandi, Feb 04 2014
    
  • Mathematica
    nxt[n_]:=Module[{idn=IntegerDigits[n], idn8=IntegerDigits[8n]}, FromDigits[Join[idn,idn8]]]; Array[nxt, 100] (* Vincenzo Librandi, Feb 04 2014 *)
  • PARI
    a(n) = eval(Str(n, 8*n)); \\ Michel Marcus, Sep 21 2015

A009474 a(n) is the concatenation of n and 9n.

Original entry on oeis.org

19, 218, 327, 436, 545, 654, 763, 872, 981, 1090, 1199, 12108, 13117, 14126, 15135, 16144, 17153, 18162, 19171, 20180, 21189, 22198, 23207, 24216, 25225, 26234, 27243, 28252, 29261, 30270, 31279, 32288, 33297, 34306, 35315, 36324, 37333, 38342, 39351
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. concatenation of n and k*n: A020338 (k=1), A019550 (k=2), A019551 (k=3), A019552 (k=4), A019553 (k=5), A009440 (k=6), A009441 (k=7), A009470 (k=8), this sequence (k=9).

Programs

  • Magma
    [Seqint(Intseq(9*n) cat Intseq(n)): n in [1..50]]; // Vincenzo Librandi, Feb 04 2014
  • Mathematica
    nxt[n_]:=Module[{idn=IntegerDigits[n], idn9=IntegerDigits[9n]}, FromDigits[Join[idn, idn9]]]; Array[nxt, 100] (* Vincenzo Librandi, Feb 04 2014 *)

A009440 a(n) is the concatenation of n and 6n.

Original entry on oeis.org

16, 212, 318, 424, 530, 636, 742, 848, 954, 1060, 1166, 1272, 1378, 1484, 1590, 1696, 17102, 18108, 19114, 20120, 21126, 22132, 23138, 24144, 25150, 26156, 27162, 28168, 29174, 30180, 31186, 32192, 33198, 34204, 35210, 36216, 37222, 38228, 39234, 40240
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. concatenation of n and k*n: A020338 (k=1), A019550 (k=2), A019551 (k=3), A019552 (k=4), A019553 (k=5), this sequence (k=6), A009441 (k=7), A009470 (k=8), A009474 (k=9).

Programs

  • Magma
    [Seqint(Intseq(6*n) cat Intseq(n)): n in [1..50]]; // Vincenzo Librandi, Feb 04 2014
  • Mathematica
    nxt[n_]:=Module[{idn=IntegerDigits[n], idn6=IntegerDigits[6n]}, FromDigits[Join[idn, idn6]]]; Array[nxt, 100] (* Vincenzo Librandi, Feb 04 2014 *)
    Table[n*10^IntegerLength[6n]+6n,{n,40}] (* Harvey P. Dale, Jul 21 2020 *)

A009441 a(n) is the concatenation of n and 7n.

Original entry on oeis.org

17, 214, 321, 428, 535, 642, 749, 856, 963, 1070, 1177, 1284, 1391, 1498, 15105, 16112, 17119, 18126, 19133, 20140, 21147, 22154, 23161, 24168, 25175, 26182, 27189, 28196, 29203, 30210, 31217, 32224, 33231, 34238, 35245, 36252, 37259, 38266, 39273, 40280
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. concatenation of n and k*n: A020338 (k=1), A019550 (k=2), A019551 (k=3), A019552 (k=4), A019553 (k=5), A009440 (k=6), this sequence (k=7), A009470 (k=8), A009474 (k=9).

Programs

  • Magma
    [Seqint(Intseq(7*n) cat Intseq(n)): n in [1..50]]; // Vincenzo Librandi, Feb 04 2014
  • Mathematica
    nxt[n_]:=Module[{idn=IntegerDigits[n], idn7=IntegerDigits[7n]}, FromDigits[Join[idn, idn7]]]; Array[nxt, 100] (* Vincenzo Librandi, Feb 04 2014 *)
    Table[n*10^IntegerLength[7n]+7n,{n,40}] (* Harvey P. Dale, Aug 02 2024 *)

A019551 a(n) is the concatenation of n and 3n.

Original entry on oeis.org

13, 26, 39, 412, 515, 618, 721, 824, 927, 1030, 1133, 1236, 1339, 1442, 1545, 1648, 1751, 1854, 1957, 2060, 2163, 2266, 2369, 2472, 2575, 2678, 2781, 2884, 2987, 3090, 3193, 3296, 3399, 34102, 35105, 36108
Offset: 1

Views

Author

R. Muller

Keywords

Crossrefs

Cf. concatenation of n and k*n: A020338 (k=1), A019550 (k=2), this sequence (k=3), A019552 (k=4), A019553 (k=5), A009440 (k=6), A009441 (k=7), A009470 (k=8), A009474 (k=9).

Programs

  • Magma
    [Seqint(Intseq(3*n) cat Intseq(n)): n in [1..50]]; // Vincenzo Librandi, Feb 04 2014
  • Maple
    a:=n->n*10^floor(log10(3*n)+1)+3*n: seq(a(n),n=1..50); # Muniru A Asiru, Jun 23 2018
  • Mathematica
    nxt[n_]:=Module[{idn=IntegerDigits[n], idn3=IntegerDigits[3n]}, FromDigits[Join[idn, idn3]]]; Array[nxt, 100] (* Vincenzo Librandi, Feb 04 2014 *)
    Table[n*10^IntegerLength[3n]+3n,{n,40}] (* Harvey P. Dale, Apr 24 2022 *)

A019552 a(n) is the concatenation of n and 4n.

Original entry on oeis.org

14, 28, 312, 416, 520, 624, 728, 832, 936, 1040, 1144, 1248, 1352, 1456, 1560, 1664, 1768, 1872, 1976, 2080, 2184, 2288, 2392, 2496, 25100, 26104, 27108, 28112, 29116, 30120, 31124, 32128, 33132, 34136, 35140, 36144, 37148, 38152, 39156, 40160, 41164
Offset: 1

Views

Author

R. Muller

Keywords

Comments

a(n) is divisible by 4 for n >= 2. - Michel Marcus, Sep 21 2015

Crossrefs

Cf. concatenation of n and k*n: A020338 (k=1), A019550 (k=2), A019551 (k=3), this sequence (k=4), A019553 (k=5), A009440 (k=6), A009441 (k=7), A009470 (k=8), A009474 (k=9).

Programs

  • Magma
    [Seqint(Intseq(4*n) cat Intseq(n)): n in [1..50]]; // Vincenzo Librandi, Feb 04 2014
    
  • Maple
    a:=n->n*10^floor(log10(4*n)+1)+4*n: seq(a(n),n=1..50); # Muniru A Asiru, Jun 23 2018
  • Mathematica
    Table[FromDigits[Join[IntegerDigits[n],IntegerDigits[4n]]],{n,50}] (* Harvey P. Dale, May 11 2011 *)
    nxt[n_]:=Module[{idn=IntegerDigits[n], idn4=IntegerDigits[4n]}, FromDigits[Join[idn, idn4]]]; Array[nxt, 100] (* Vincenzo Librandi, Feb 04 2014 *)
  • PARI
    a(n) = eval(Str(n, 4*n)); \\ Michel Marcus, Sep 21 2015

A019553 a(n) is the concatenation of n and 5n.

Original entry on oeis.org

15, 210, 315, 420, 525, 630, 735, 840, 945, 1050, 1155, 1260, 1365, 1470, 1575, 1680, 1785, 1890, 1995, 20100, 21105, 22110, 23115, 24120, 25125, 26130, 27135, 28140, 29145, 30150, 31155, 32160, 33165, 34170, 35175, 36180, 37185, 38190, 39195, 40200
Offset: 1

Views

Author

R. Muller

Keywords

Comments

All terms are divisible by 15. - Michel Marcus, Sep 21 2015

Crossrefs

Cf. concatenation of n and k*n: A020338 (k=1), A019550 (k=2), A019551 (k=3), A019552 (k=4), this sequence (k=5), A009440 (k=6), A009441 (k=7), A009470 (k=8), A009474 (k=9).

Programs

  • Magma
    [Seqint(Intseq(5*n) cat Intseq(n)): n in [1..50]]; // Vincenzo Librandi, Feb 04 2014
    
  • Maple
    a:=n->n*10^floor(log10(5*n)+1)+5*n: seq(a(n),n=1..50); # Muniru A Asiru, Jun 23 2018
  • Mathematica
    n5n[n_]:=Module[{n5=5n},n*10^IntegerLength[n5]+n5]; Array[n5n,40] (* Harvey P. Dale, Apr 08 2012 *)
    nxt[n_]:=Module[{idn=IntegerDigits[n], idn5=IntegerDigits[5n]}, FromDigits[Join[idn, idn5]]]; Array[nxt, 100] (* Vincenzo Librandi, Feb 04 2014 *)
  • PARI
    a(n) = eval(Str(n, 5*n)); \\ Michel Marcus, Sep 21 2015

A235497 2n concatenated with n.

Original entry on oeis.org

21, 42, 63, 84, 105, 126, 147, 168, 189, 2010, 2211, 2412, 2613, 2814, 3015, 3216, 3417, 3618, 3819, 4020, 4221, 4422, 4623, 4824, 5025, 5226, 5427, 5628, 5829, 6030, 6231, 6432, 6633, 6834, 7035, 7236, 7437, 7638, 7839, 8040, 8241, 8442, 8643, 8844, 9045
Offset: 1

Views

Author

Vincenzo Librandi, Feb 04 2014

Keywords

Comments

All terms are divisible by 3. - Michel Marcus, Sep 21 2015

Crossrefs

Cf. A019550.

Programs

  • Magma
    [Seqint(Intseq(n) cat Intseq(2*n)): n in [1..50]];
    
  • Mathematica
    nxt[n_] := Module[{idn = IntegerDigits[n], idn2 = IntegerDigits[2 n]}, FromDigits[Join[idn2, idn]]]; Array[nxt, 50] (* Librandi *)
    Table[FromDigits[Join[IntegerDigits[2n], IntegerDigits[n]]], {n, 40}] (* Alonso del Arte, Sep 13 2014 *)
  • Maxima
    makelist(2*n*10^floor(log(n)/log(10) + 1) + n,n,50); /* Bruno Berselli, Feb 06 2014, using the closed form added from Alois P. Heinz on Feb 05 2014 */
    
  • PARI
    a(n) = eval(Str(2*n, n)); \\ Michel Marcus, Sep 21 2015

Formula

a(n) = 2*n*10^floor(log_10(n) + 1) + n.
Showing 1-10 of 11 results. Next