A020338 Doublets: base-10 representation is the juxtaposition of two identical strings.
11, 22, 33, 44, 55, 66, 77, 88, 99, 1010, 1111, 1212, 1313, 1414, 1515, 1616, 1717, 1818, 1919, 2020, 2121, 2222, 2323, 2424, 2525, 2626, 2727, 2828, 2929, 3030, 3131, 3232, 3333, 3434, 3535, 3636, 3737, 3838, 3939, 4040, 4141, 4242, 4343, 4444, 4545, 4646
Offset: 1
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..9999
- Eric Weisstein's World of Mathematics, Concatenation
Crossrefs
Programs
-
GAP
Flat(List([1..2],d->List([10^(d-1)..10^d-1],n->(10^d+1)*n))); # Muniru A Asiru, Mar 31 2018
-
Haskell
a020338 n = read (ns ++ ns) :: Integer where ns = show n -- Reinhard Zumkeller, Jun 07 2015
-
Magma
[Seqint(Intseq(n) cat Intseq(n)): n in [1..46]]; // Bruno Berselli, Mar 20 2013
-
Maple
seq(seq((10^d+1)*n, n = 10^(d-1)..10^d-1),d=1..3); # Robert Israel, Jan 02 2015
-
Mathematica
nxt[n_]:=Module[{idn=IntegerDigits[n], idn1=IntegerDigits[n]}, FromDigits[Join[idn, idn1]]];Array[nxt, 100] (* Vincenzo Librandi, Feb 04 2014 *)
-
PARI
a(n) = eval(Str(n,n)); \\ Michel Marcus, Sep 10 2015
-
Sage
[int(str(n)+str(n)) for n in range(1,47)] # Danny Rorabaugh, Oct 10 2015
Formula
a(n) = n*10^(A004216(n)+1) + n. - Reinhard Zumkeller, Aug 11 2007
G.f.: 11*x/(1-x)^2 - Sum_{d >= 1} 9*x^(10^d)*(100^d*x-10^d*x-100^d)/(1-x)^2. - Robert Israel, Jan 02 2015
a(n) = n || n. (Where "||" denotes "concatenate". See link "Concatenation".) - Halfdan Skjerning, Apr 01 2018
Comments