A068899 Triangular numbers containing 2n digits obtained by duplicating the first n digits; i.e., triangular numbers in A020338.
55, 66, 5050, 5151, 203203, 255255, 426426, 500500, 501501, 581581, 828828, 930930, 39653965, 50005000, 50015001, 61566156, 3347133471, 5000050000, 5000150001, 6983669836, 220028220028, 500000500000, 500001500001
Offset: 1
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
N:= 10: # to get all terms of up to 2N digits Res:= NULL: for n from 1 to N do Divs:= select(t -> igcd(t,(10^n+1)/t)=1, numtheory:-divisors(10^n+1)); for d in Divs do for e in [1,3] do u:= chrem([1,-1,e],[d,(10^n+1)/d,4]); y:= (u^2-1)/8/(10^n+1); if y >= 10^(n-1) and y < 10^n then Res:= Res, y*(10^n+1) fi; od od od: sort([Res]); # Robert Israel, Feb 27 2017
-
Mathematica
Select[Accumulate[Range[5*10^6]],EvenQ[IntegerLength[#]]&&Take[ IntegerDigits[ #],IntegerLength[ #]/2]== Take[IntegerDigits[#],-IntegerLength[#]/2]&] (* Harvey P. Dale, Aug 20 2022 *)
Extensions
Corrected and extended by Larry Reeves (larryr(AT)acm.org), Jan 10 2003
Comments