cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 64 results. Next

A068899 Triangular numbers containing 2n digits obtained by duplicating the first n digits; i.e., triangular numbers in A020338.

Original entry on oeis.org

55, 66, 5050, 5151, 203203, 255255, 426426, 500500, 501501, 581581, 828828, 930930, 39653965, 50005000, 50015001, 61566156, 3347133471, 5000050000, 5000150001, 6983669836, 220028220028, 500000500000, 500001500001
Offset: 1

Views

Author

Amarnath Murthy, Mar 21 2002

Keywords

Comments

The sequence is infinite: the 10^n-th and the (10^n + 1)-th triangular numbers are members. It is a subsequence of A068898.

Crossrefs

Programs

  • Maple
    N:= 10: # to get all terms of up to 2N digits
    Res:= NULL:
    for n from 1 to N do
       Divs:= select(t -> igcd(t,(10^n+1)/t)=1, numtheory:-divisors(10^n+1));
       for d in Divs do
         for e in [1,3] do
          u:= chrem([1,-1,e],[d,(10^n+1)/d,4]);
          y:= (u^2-1)/8/(10^n+1);
          if y >= 10^(n-1) and y < 10^n then Res:= Res, y*(10^n+1) fi;
    od od od:
    sort([Res]); # Robert Israel, Feb 27 2017
  • Mathematica
    Select[Accumulate[Range[5*10^6]],EvenQ[IntegerLength[#]]&&Take[ IntegerDigits[ #],IntegerLength[ #]/2]== Take[IntegerDigits[#],-IntegerLength[#]/2]&] (* Harvey P. Dale, Aug 20 2022 *)

Extensions

Corrected and extended by Larry Reeves (larryr(AT)acm.org), Jan 10 2003

A121826 a(n) = Product_{k=1..n} D(k), where D() are the doublets, A020338.

Original entry on oeis.org

11, 242, 7986, 351384, 19326120, 1275523920, 98215341840, 8642950081920, 855652058110080, 864208578691180800, 960135730925901868800, 1163684505882193064985600, 1527917756223319494326092800, 2160475707299773764977095219200, 3273120696559157253940299257088000
Offset: 1

Views

Author

Jason Earls, Aug 27 2006

Keywords

Comments

a(n) is divisible by n! because D(k) is divisible by k. - Michel Marcus, Jan 07 2021

Examples

			a(4)=351384 because 11*22*33*44 = 351384.
		

Crossrefs

Programs

A121837 Least positive j such that Product_{k=1..n} D(k) + j is prime, where D() are the doublets, A020338.

Original entry on oeis.org

2, 9, 7, 7, 17, 7, 29, 17, 19, 23, 23, 13, 29, 79, 19, 89, 97, 53, 43, 347, 127, 127, 149, 29, 167, 331, 379, 61, 59, 167, 199, 557, 107, 113, 43, 191, 439, 41, 263, 227, 109, 71, 227, 137, 149, 409, 271, 53, 157, 79, 503, 103, 461, 137, 587, 233, 491, 73, 367, 233, 449
Offset: 1

Views

Author

Jason Earls, Aug 28 2006

Keywords

Comments

Is every term for n > 2 always prime?
a(159) = 1. - Michel Marcus, Jan 07 2021
a(n) = 1 for n = 245 and 702 (using ispseudoprime() in PARI). - Michel Marcus, Jan 08 2021

Crossrefs

Programs

  • PARI
    D(n) = eval(Str(n, n)); \\ A020338
    f(n) = prod(k=1, n, D(k)); \\ A121826
    a(n) = my(q=f(n)); nextprime(q+1) - q; \\ Michel Marcus, Jan 07 2021

Formula

a(n) = A013632(A121826(n)). - Michel Marcus, Jan 07 2021

A121882 Numbers k such that k + D(k) + 1 is prime, where D() are the doublets, A020338.

Original entry on oeis.org

1, 3, 5, 6, 8, 9, 10, 11, 13, 14, 15, 21, 23, 25, 28, 30, 31, 34, 35, 36, 38, 45, 49, 50, 53, 60, 63, 64, 66, 69, 71, 74, 76, 79, 80, 81, 83, 90, 91, 99, 101, 105, 106, 108, 110, 113, 114, 124, 128, 130, 134, 135, 136, 140, 141, 143, 144, 150, 151, 159, 161, 163, 165
Offset: 1

Views

Author

Jason Earls, Aug 31 2006

Keywords

Examples

			9 is a term because 9 + 99 + 1 = 109 is prime.
		

Crossrefs

Cf. A020338.

Programs

  • Maple
    filter:= n -> isprime(1+n*(2+10^(1+ilog10(n)))):
    select(filter, [$1..1000]);# Robert Israel, Feb 23 2022
  • PARI
    isok(k) = isprime(k + eval(Str(k, k)) + 1); \\ Michel Marcus, Feb 25 2022

A380233 Odd abundant numbers not divisible by 5 that are also doublets (cf. A020338).

Original entry on oeis.org

153153, 171171, 189189, 207207, 243243, 261261, 279279, 297297, 351351, 459459, 513513, 567567, 621621, 729729, 783783, 837837, 891891, 999999, 1392313923, 1556115561, 1719917199, 1883718837, 2034920349, 2211322113, 2375123751, 2538925389, 2702727027, 3194131941, 4176941769, 4668346683
Offset: 1

Views

Author

Omar E. Pol, Jan 17 2025

Keywords

Comments

There are 26 odd abundant numbers not divisible by 5 less than 10^6. The surprising fact is that 18 of them are doublets.
Another interesting fact is that here there are no terms with 8 digits.

Crossrefs

Intersection of A064001 and A020338.

Programs

  • Maple
    doublet:= n -> n * (10^(1+ilog10(n))+1):
    select(t -> numtheory:-sigma(t) > 2*t, [seq(seq(doublet(10*x+i),i=[1,3,7,9]),x=1..10000); # Robert Israel, Jan 17 2025
  • Mathematica
    Select[Table[FromDigits[Join[#, #] &@ IntegerDigits[n]], {n, Select[Range[50000], CoprimeQ[#, 10] &]}], DivisorSigma[-1, #] > 2 &] (* Amiram Eldar, Jan 17 2025 *)
  • PARI
    select(x->((x%5) && (sigma(x)>2*x)), vector(50000, n, eval(Str(2*n-1, 2*n-1)))) \\ Michel Marcus, Jan 17 2025

Extensions

More terms from Michel Marcus, Jan 17 2025

A348166 a(n) = abs(A020338(n)-A338754(n)).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 90, 0, 90, 180, 270, 360, 450, 540, 630, 720, 180, 90, 0, 90, 180, 270, 360, 450, 540, 630, 270, 180, 90, 0, 90, 180, 270, 360, 450, 540, 360, 270, 180, 90, 0, 90, 180, 270, 360, 450, 450, 360, 270, 180, 90, 0, 90, 180, 270, 360, 540, 450, 360, 270, 180, 90, 0, 90, 180, 270, 630, 540, 450, 360, 270, 180, 90
Offset: 1

Views

Author

Nicolas Bělohoubek, Oct 04 2021

Keywords

Comments

All terms are multiples of 90.

Examples

			a(1) = abs(11-11) = 0
a(15) = abs(1515-1155) = 360
a(1965) = abs(19651965-11996655) = 7655310
		

Crossrefs

Programs

Formula

a(A010785(n)) = 0

Extensions

Corrected by Charles R Greathouse IV, Oct 04 2021

A380232 Odd abundant numbers that are also doublets (cf. A020338).

Original entry on oeis.org

105105, 135135, 153153, 165165, 171171, 189189, 195195, 207207, 225225, 243243, 255255, 261261, 279279, 285285, 297297, 315315, 345345, 351351, 375375, 405405, 435435, 459459, 465465, 495495, 513513, 525525, 555555, 567567, 585585, 615615, 621621, 645645, 675675, 705705, 729729, 735735, 765765, 783783, 795795, 825825, 837837
Offset: 1

Views

Author

Omar E. Pol, Jan 17 2025

Keywords

Examples

			a(1) = 105105 is an odd abundant number (cf. A005231) because it is and odd number and the sum of its divisors is equal to 229824 which exceeds 2*105105 = 210210. Also 105105 is a doublet (cf. A020338) because it is 105||105, that is the concatenation of 105 and 105, so 105105 is in the sequence.
		

Crossrefs

Intersection of A005231 and A020338.
A subsequence is A380233.

Programs

  • Mathematica
    Select[Table[FromDigits[Join[#, #] &@ IntegerDigits[n]], {n, 1, 850, 2}], DivisorSigma[-1, #] > 2 &] (* Amiram Eldar, Jan 18 2025 *)
  • PARI
    select(x->(sigma(x)>2*x), vector(1000, n, eval(Str(2*n-1, 2*n-1)))) \\ Michel Marcus, Jan 18 2025

A007732 Period of decimal representation of 1/n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 2, 1, 6, 6, 1, 1, 16, 1, 18, 1, 6, 2, 22, 1, 1, 6, 3, 6, 28, 1, 15, 1, 2, 16, 6, 1, 3, 18, 6, 1, 5, 6, 21, 2, 1, 22, 46, 1, 42, 1, 16, 6, 13, 3, 2, 6, 18, 28, 58, 1, 60, 15, 6, 1, 6, 2, 33, 16, 22, 6, 35, 1, 8, 3, 1, 18, 6, 6, 13, 1, 9, 5, 41, 6, 16, 21, 28, 2, 44, 1
Offset: 1

Views

Author

N. J. A. Sloane, Hal Sampson [ hals(AT)easynet.com ]

Keywords

Comments

Appears to be a divisor of A007733*A007736. - Henry Bottomley, Dec 20 2001
Primes p such that a(p) = p-1 are in A001913. - Dmitry Kamenetsky, Nov 13 2008
When 1/n has a finite decimal expansion (namely, when n = 2^a*5^b), a(n) = 1 while A051626(n) = 0. - M. F. Hasler, Dec 14 2015
a(n.n) >= a(n) where n.n is A020338(n). - Davide Rotondo, Jun 13 2024

References

  • J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, NY, 1996, pp. 159 etc.

Crossrefs

Programs

  • Maple
    A007732 := proc(n)
        a132740 := 1 ;
        for pe in ifactors(n)[2] do
            if not op(1,pe) in {2,5} then
                a132740 := a132740*op(1,pe)^op(2,pe) ;
            end if;
        end do:
        if a132740 = 1 then
            1 ;
        else
            numtheory[order](10,a132740) ;
        end if;
    end proc:
    seq(A007732(n),n=1..50) ; # R. J. Mathar, May 05 2023
  • Mathematica
    Table[r = n/2^IntegerExponent[n, 2]/5^IntegerExponent[n, 5]; MultiplicativeOrder[10, r], {n, 100}] (* T. D. Noe, Oct 17 2012 *)
  • PARI
    a(n)=znorder(Mod(10,n/2^valuation(n,2)/5^valuation(n,5))) \\ Charles R Greathouse IV, Jan 14 2013
    
  • Python
    from sympy import n_order, multiplicity
    def A007732(n): return n_order(10,n//2**multiplicity(2,n)//5**multiplicity(5,n)) # Chai Wah Wu, Feb 07 2022
  • Sage
    def a(n):
        n = ZZ(n)
        rad = 2**n.valuation(2) * 5**n.valuation(5)
        return Zmod(n // rad)(10).multiplicative_order()
    [a(n) for n in range(1, 20)]
    # F. Chapoton, May 03 2020
    

Formula

Note that if n=r*s where r is a power of 2 and s is odd then a(n)=a(s). Also if n=r*s where r is a power of 5 and s is not divisible by 5 then a(n) = a(s). So we just need a(n) for n not divisible by 2 or 5. This is the smallest number m such that n divides 10^m - 1; m is a divisor of phi(n), where phi = A000010.
phi(n) = n-1 only if n is prime and since a(n) divides phi(n), a(n) can only equal n-1 if n is prime. - Scott Hemphill (hemphill(AT)alumni.caltech.edu), Nov 23 2006
a(n)=a(A132740(n)); a(A132741(n))=a(A003592(n))=1. - Reinhard Zumkeller, Aug 27 2007

Extensions

More terms from James Sellers, Feb 05 2000

A056524 Palindromes with even number of digits.

Original entry on oeis.org

11, 22, 33, 44, 55, 66, 77, 88, 99, 1001, 1111, 1221, 1331, 1441, 1551, 1661, 1771, 1881, 1991, 2002, 2112, 2222, 2332, 2442, 2552, 2662, 2772, 2882, 2992, 3003, 3113, 3223, 3333, 3443, 3553, 3663, 3773, 3883, 3993, 4004, 4114, 4224, 4334, 4444, 4554
Offset: 1

Views

Author

Henry Bottomley, Jun 16 2000

Keywords

Comments

Concatenation of n with reverse of n (keeping leading zeros in the reverse).
A178788(a(n)) = 0 for n > 1. - Reinhard Zumkeller, Jun 30 2010
All of the terms are divisible by eleven. - James Burling, Aug 08 2014

Crossrefs

Cf. A110745 (permutation).

Programs

  • Haskell
    a056524 n = a056524_list !! (n-1)
    a056524_list = [read (ns ++ reverse ns) :: Integer |
                    n <- [0..], let ns = show n]
    -- Reinhard Zumkeller, Dec 28 2011
    
  • Mathematica
    d[n_]:=IntegerDigits[n]; Table[FromDigits[Join[x=d[n],Reverse[x]]],{n,45}] (* Jayanta Basu, May 29 2013 *)
    Select[Flatten[Table[Range[10^n,10^(n+1)-1],{n,1,3,2}]],PalindromeQ] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Feb 22 2018 *)
  • Python
    def a(n): s = str(n); return int(s + s[::-1])
    print([a(n) for n in range(1, 46)]) # Michael S. Branicky, Nov 02 2021

Formula

a(n) = n*10^A055642(n) + A004086(n).
a(n) = 11 * A066492(n).

A019550 a(n) is the concatenation of n and 2n.

Original entry on oeis.org

12, 24, 36, 48, 510, 612, 714, 816, 918, 1020, 1122, 1224, 1326, 1428, 1530, 1632, 1734, 1836, 1938, 2040, 2142, 2244, 2346, 2448, 2550, 2652, 2754, 2856, 2958, 3060, 3162, 3264, 3366, 3468, 3570, 3672, 3774, 3876, 3978, 4080, 4182, 4284, 4386, 4488, 4590
Offset: 1

Views

Author

R. Muller

Keywords

Comments

Concatenation of digits of n and 2*n. - Harvey P. Dale, Sep 13 2011
All terms are divisible by 6. - Robert Israel, Sep 21 2015

Crossrefs

Cf. concatenation of n and k*n: A020338 (k=1), this sequence (k=2), A019551 (k=3), A019552 (k=4), A019553 (k=5), A009440 (k=6), A009441 (k=7), A009470 (k=8), A009474 (k=9).
Cf. A235497.
Supersequence of A117304.

Programs

  • Magma
    [Seqint(Intseq(2*n) cat Intseq(n)): n in [1..50]]; // Vincenzo Librandi, Feb 04 2014
    
  • Maple
    seq(n*(10^(1+ilog10(2*n))+2),n=1..100); # Robert Israel, Sep 21 2015
  • Mathematica
    nxt[n_]:=Module[{idn=IntegerDigits[n],idn2=IntegerDigits[2n]}, FromDigits[ Join[ idn,idn2]]]; Array[nxt,40] (* Harvey P. Dale, Sep 13 2011 *)
  • PARI
    a(n) = eval(Str(n, 2*n)); \\ Michel Marcus, Sep 21 2015
    
  • Python
    def a(n): return int(str(n) + str(2*n))
    print([a(n) for n in range(1, 46)]) # Michael S. Branicky, Dec 24 2021

Formula

From Robert Israel, Sep 21 2015 (Start)
G.f.: (6*(2*x+75*x^5-60*x^6) + 90*Sum_{k>=1} 10^k*x^(5*10^k)*(5*10^k - (5*10^k-1)*x))/(1-x)^2.
a(n+2) - 2*a(n+1) + a(n) = 45*10^(2*k+1) if n = 5*10^k-2, 90*10^k-450*10^(2*k) if n = 5*10^k-1, 0 otherwise. (End)

Extensions

Offset changed from 0 to 1 by Vincenzo Librandi, Feb 04 2014
Showing 1-10 of 64 results. Next