cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A019553 a(n) is the concatenation of n and 5n.

Original entry on oeis.org

15, 210, 315, 420, 525, 630, 735, 840, 945, 1050, 1155, 1260, 1365, 1470, 1575, 1680, 1785, 1890, 1995, 20100, 21105, 22110, 23115, 24120, 25125, 26130, 27135, 28140, 29145, 30150, 31155, 32160, 33165, 34170, 35175, 36180, 37185, 38190, 39195, 40200
Offset: 1

Views

Author

R. Muller

Keywords

Comments

All terms are divisible by 15. - Michel Marcus, Sep 21 2015

Crossrefs

Cf. concatenation of n and k*n: A020338 (k=1), A019550 (k=2), A019551 (k=3), A019552 (k=4), this sequence (k=5), A009440 (k=6), A009441 (k=7), A009470 (k=8), A009474 (k=9).

Programs

  • Magma
    [Seqint(Intseq(5*n) cat Intseq(n)): n in [1..50]]; // Vincenzo Librandi, Feb 04 2014
    
  • Maple
    a:=n->n*10^floor(log10(5*n)+1)+5*n: seq(a(n),n=1..50); # Muniru A Asiru, Jun 23 2018
  • Mathematica
    n5n[n_]:=Module[{n5=5n},n*10^IntegerLength[n5]+n5]; Array[n5n,40] (* Harvey P. Dale, Apr 08 2012 *)
    nxt[n_]:=Module[{idn=IntegerDigits[n], idn5=IntegerDigits[5n]}, FromDigits[Join[idn, idn5]]]; Array[nxt, 100] (* Vincenzo Librandi, Feb 04 2014 *)
  • PARI
    a(n) = eval(Str(n, 5*n)); \\ Michel Marcus, Sep 21 2015