A019555 Smallest number whose cube is divisible by n.
1, 2, 3, 2, 5, 6, 7, 2, 3, 10, 11, 6, 13, 14, 15, 4, 17, 6, 19, 10, 21, 22, 23, 6, 5, 26, 3, 14, 29, 30, 31, 4, 33, 34, 35, 6, 37, 38, 39, 10, 41, 42, 43, 22, 15, 46, 47, 12, 7, 10, 51, 26, 53, 6, 55, 14, 57, 58, 59, 30, 61, 62, 21, 4, 65, 66, 67, 34, 69, 70, 71, 6, 73, 74, 15, 38, 77, 78
Offset: 1
Links
- Peter Kagey, Table of n, a(n) for n = 1..10000
- Henry Bottomley, Some Smarandache-type multiplicative sequences.
- Kevin A. Broughan, Restricted divisor sums, Acta Arithmetica, 101(2) (2002), 105-114.
- Kevin A. Broughan, Relationship between the integer conductor and k-th root functions, Int. J. Pure Appl. Math. 5(3) (2003), 253-275.
- Kevin A. Broughan, Relaxations of the ABC Conjecture using integer k'th roots, New Zealand J. Math. 35(2) (2006), 121-136.
- Vaclav Kotesovec, Graph - the asymptotic ratio (1000000 terms).
- Ana Rechtman, Mai 2021, 4e défi, Images des Mathématiques, CNRS, 2021 (in French).
- Florentin Smarandache, Collected Papers, Vol. II, Tempus Publ. Hse, Bucharest, 1996.
- Eric Weisstein's World of Mathematics, Smarandache Ceil Function.
Crossrefs
Programs
-
Maple
f:= n -> mul(t[1]^ceil(t[2]/3), t = ifactors(n)[2]): map(f, [$1..100]); # Robert Israel, Sep 22 2015
-
Mathematica
cubes=Range[85]^3; Table[Position[Divisible[cubes,i],True,1,1][[1,1]],{i,85}] (* Harvey P. Dale, Jan 12 2011 *) f[p_, e_] := p^Ceiling[e/3]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Jan 06 2024 *)
-
PARI
a(n)=my(r=1);while(r^3%n!=0,r++);r \\ Anders Hellström, Sep 22 2015
-
PARI
for(n=1, 100, print1(direuler(p=2, n, (1 + p*X + p*X^2)/(1 - p*X^3))[n], ", ")) \\ Vaclav Kotesovec, Aug 30 2021
-
PARI
a(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i,1]^ceil(f[i,2]/3));} \\ Amiram Eldar, Jan 06 2024
-
Python
from math import prod from sympy import factorint def A019555(n): return prod(p**((q%3 != 0)+(q//3)) for p, q in factorint(n).items()) # Chai Wah Wu, Aug 18 2021
-
Sage
[prod([t[0]^(ceil(t[1]/3)) for t in factor(n)]) for n in range(1,79)] # Danny Rorabaugh, Sep 22 2015
Formula
Replace any cubic factors in n by their cube roots.
a(n) = n/A000189(n).
Multiplicative with a(p^e) = p^ceiling(e/3). - R. J. Mathar, May 29 2011
From Vaclav Kotesovec, Aug 30 2021: (Start)
Dirichlet g.f.: zeta(3*s-1) * Product_{p prime} (1 + p^(1 - s) + p^(1 - 2*s)).
Dirichlet g.f.: zeta(3*s-1) * zeta(s-1) * Product_{p prime} (1 - p^(2 - 3*s) + p^(1 - 2*s) - p^(2 - 2*s)).
Sum_{k=1..n} a(k) ~ c * zeta(5) * n^2 / 2, where c = Product_{p prime} (1 - 1/p^2 + 1/p^3 - 1/p^4) = 0.684286924186862318141968725791218083472312736723163777284618226290055... (End)
Extensions
Corrected and extended by David W. Wilson
Comments