A019679 Decimal expansion of Pi/12.
2, 6, 1, 7, 9, 9, 3, 8, 7, 7, 9, 9, 1, 4, 9, 4, 3, 6, 5, 3, 8, 5, 5, 3, 6, 1, 5, 2, 7, 3, 2, 9, 1, 9, 0, 7, 0, 1, 6, 4, 3, 0, 7, 8, 3, 2, 8, 1, 2, 5, 8, 8, 1, 8, 4, 1, 4, 5, 7, 8, 7, 1, 6, 0, 2, 5, 6, 5, 1, 3, 6, 7, 1, 9, 0, 5, 1, 7, 4, 1, 6, 5, 5, 2, 3, 3, 6, 2, 3, 5, 4, 4, 5, 1, 7, 6, 4, 2, 2
Offset: 0
Examples
Pi/12 = 0.2617993877991494365385536152732919070164307...
References
- Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 8.4, p. 492.
Links
- Ivan Panchenko, Table of n, a(n) for n = 0..1000
- Index entries for transcendental numbers.
Programs
-
Mathematica
RealDigits[N[Pi/12, 6! ]] (* Vladimir Joseph Stephan Orlovsky, Dec 02 2009 *) RealDigits[Pi/12,10,120][[1]] (* Harvey P. Dale, Jan 12 2024 *)
-
PARI
Pi/12 \\ Charles R Greathouse IV, Sep 28 2022
Formula
Equals Integral_{x = 0..1} x^2*sqrt(1 - x^6) dx. - Peter Bala, Oct 27 2019
Equals Sum_{k>=0} binomial(2*k,k)/((2*k+1)*4^(2*k+1)). - Amiram Eldar, May 30 2021
Constant divided by 10 = Pi/120 = 0.0261799387... = Sum_{n = -oo..oo} 1/((4*n+1)*(4*n+2)*(4*n+3)*(4*n+5)*(4*n+6)*(4*n+7)) (using the Eisenstein summation convention Sum_{n = -oo..oo} = lim_{N -> oo} Sum_{n = -N..N}). Note that 22/7 - Pi = 240*Sum_{n >= 1} 1/((4*n+1)*(4*n+2)*(4*n+3)*(4*n+5)*(4*n+6)*(4*n+7)). - Peter Bala, Nov 28 2021
Comments