A019683 Decimal expansion of Pi/16.
1, 9, 6, 3, 4, 9, 5, 4, 0, 8, 4, 9, 3, 6, 2, 0, 7, 7, 4, 0, 3, 9, 1, 5, 2, 1, 1, 4, 5, 4, 9, 6, 8, 9, 3, 0, 2, 6, 2, 3, 2, 3, 0, 8, 7, 4, 6, 0, 9, 4, 4, 1, 1, 3, 8, 1, 0, 9, 3, 4, 0, 3, 7, 0, 1, 9, 2, 3, 8, 5, 2, 5, 3, 9, 2, 8, 8, 8, 0, 6, 2, 4, 1, 4, 2, 5, 2, 1, 7, 6, 5, 8, 3, 8, 8, 2, 3, 1, 6
Offset: 0
Examples
Pi/16 = 0.19634954084936207740391521145496893026232308746094411381... - _Vladimir Joseph Stephan Orlovsky_, Dec 02 2009
References
- Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 8.4.2, p. 494.
Links
- Ivan Panchenko, Table of n, a(n) for n = 0..1000
- Index entries for transcendental numbers.
Programs
-
Magma
R:= RealField(100); Pi(R)/16; // G. C. Greubel, Aug 26 2019
-
Mathematica
RealDigits[N[Pi/16,6! ]] (* Vladimir Joseph Stephan Orlovsky, Dec 02 2009 *)
-
PARI
default(realprecision, 100); Pi/16 \\ G. C. Greubel, Aug 26 2019
-
Sage
numerical_approx(pi/16, digits=100) # G. C. Greubel, Aug 26 2019
Formula
From Peter Bala, Oct 27 2019: (Start)
Equals Integral_{x = 0..1} x^2*sqrt(1 - x^2) dx = Integral_{x = 0..1} x^3*sqrt(1 - x^8) dx.
Equals Integral_{x = 0..inf} x^2/(1 + x^2)^3 dx. (End)
From Amiram Eldar, Aug 04 2020: (Start)
Equals Sum_{k>=1} sin(k)^3 * cos(k)/k.
Equals Sum_{k>=1} sin(k)^3 * cos(k)^2/k.
Equals Sum_{k>=1} (-1)^(k+1) * sin((2*k-1)/4)/(2*k-1)^2. (End)