cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A217481 Decimal expansion of sqrt(2*Pi)/4.

Original entry on oeis.org

6, 2, 6, 6, 5, 7, 0, 6, 8, 6, 5, 7, 7, 5, 0, 1, 2, 5, 6, 0, 3, 9, 4, 1, 3, 2, 1, 2, 0, 2, 7, 6, 1, 3, 1, 3, 2, 5, 1, 7, 4, 6, 6, 8, 5, 1, 5, 2, 4, 8, 4, 5, 7, 9, 1, 5, 7, 4, 8, 0, 8, 9, 4, 0, 8, 5, 5, 7, 3, 4, 1, 3, 6, 5, 1, 9, 6, 0, 4, 9, 3, 7, 3, 6, 6, 4, 8, 9, 5, 9, 5, 9, 4, 5, 1, 4, 3, 1, 6, 5, 2, 9, 0, 0, 2
Offset: 0

Views

Author

R. J. Mathar, Oct 04 2012

Keywords

Comments

Equals Integral_{x>=0} sin(x^2) dx.
The generalizations are Integral_{x>=0} exp(i*x^n) dx =
0.6266570686577501... + i*0.6266570686577501... for n=2,
0.7733429420779898... + i*0.4464897557846246... for n=3,
0.8374066967690864... + i*0.3468652110238094... for n=4,
0.8732303655178185... + i*0.2837297451053993... for n=5,
and
Gamma(1/n)*i^(1/n)/n in general, where i is the imaginary unit. - R. J. Mathar, Nov 14 2012
Mean of cycle length (and of tail length) in Pollard rho method for factoring n is sqrt(2*Pi)/4*sqrt(n). - Jean-François Alcover, May 27 2013
If m = (1/2) * sqrt(Pi/2), then the coordinates of the two asymptotic points of the Cornu spiral (also called clothoide) and whose Cartesian parametrization is: x = a * Integral_{0..t} cos(u^2) du and y = a * Integral_{0..t} sin(u^2) du are (a*m, a*m) and (-a*m, -a*m) (see the curve at the MathCurve link). - Bernard Schott, Mar 02 2020
Equals the limit as x approaches infinity of the Fresnel integrals Integral_{0..x} sin(t^2) dt and Integral_{0..x} cos(t^2) dt. - Bernard Schott, Mar 05 2020

Examples

			equals 0.62665706865775012560394132120276131... = A019727 / 4 = sqrt(A019675).
		

Crossrefs

Apart from possible scaling sqrt(A019692/2^n) for n=0..7 are A019727, A002161, A069998, A019704, this sequence, A019706, A143149, A019710.

Programs

  • Magma
    Sqrt(2*Pi(RealField(100)))/4; // G. C. Greubel, Sep 30 2018
  • Maple
    evalf(sqrt(2*Pi))/4 ;
  • Mathematica
    First@ RealDigits[N[Sqrt[2 Pi]/4, 105]] (* Michael De Vlieger, Sep 24 2018 *)
  • Maxima
    fpprec : 100; ev(bfloat(sqrt(2*%pi)))/4; /* Martin Ettl, Oct 04 2012 */
    
  • PARI
    sqrt(2*Pi)/4 \\ Altug Alkan, Sep 08 2018
    
  • Sage
    ((sqrt(2*pi))/4).n(digits=100) # Jani Melik, Oct 05 2012
    

Formula

From A.H.M. Smeets, Sep 22 2018: (Start)
Equals Integral_{x >= 0} sin(4x)/sqrt(x) dx [see Gradsteyn and Ryzhik].
Equals Integral_{x >= 0} cos(4x)/sqrt(x) dx [see Gradsteyn and Ryzhik]. (End)
From Bernard Schott, Mar 02 2020: (Start)
Equals Integral_{x >= 0} cos(x^2) dx or Integral_{x >= 0} sin(x^2) dx.
Equals sqrt(Pi/8) or (1/2)*sqrt(Pi/2). (End)

A143149 Decimal expansion of 5*sqrt(2*Pi)/4.

Original entry on oeis.org

3, 1, 3, 3, 2, 8, 5, 3, 4, 3, 2, 8, 8, 7, 5, 0, 6, 2, 8, 0, 1, 9, 7, 0, 6, 6, 0, 6, 0, 1, 3, 8, 0, 6, 5, 6, 6, 2, 5, 8, 7, 3, 3, 4, 2, 5, 7, 6, 2, 4, 2, 2, 8, 9, 5, 7, 8, 7, 4, 0, 4, 4, 7, 0, 4, 2, 7, 8, 6, 7, 0, 6, 8, 2, 5, 9, 8, 0, 2, 4, 6, 8, 6, 8, 3, 2, 4, 4, 7, 9, 7, 9, 7, 2, 5, 7, 1, 5, 8, 2, 6, 4, 5
Offset: 1

Views

Author

Jonathan Vos Post, Jul 27 2008

Keywords

Comments

Upper bound using Shannon entropy arising in randomly-projected hypercubes.

Examples

			3.13328534328875...
		

Crossrefs

Apart from possible scaling sqrt(A019692/2^n) for n=0..7 are A019727, A002161, A069998, A019704, A217481, A019706, this sequence, A019710.
Cf. A143148 (lower bound).

Programs

  • Mathematica
    RealDigits[5*Sqrt[2*Pi]/4, 10, 120][[1]] (* Amiram Eldar, Jun 13 2023 *)
  • PARI
    5*sqrt(2*Pi)/4 \\ Michel Marcus, Mar 06 2020

Formula

Equals 10*Integral_{x>=0} x*sin(x^4) dx or 10*Integral_{x>=0} x*cos(x^4) dx (Fresnel integrals).

Extensions

Edited and a(100) corrected by Georg Fischer, Jul 16 2021
Showing 1-2 of 2 results.