cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A019875 Decimal expansion of sine of 66 degrees.

Original entry on oeis.org

9, 1, 3, 5, 4, 5, 4, 5, 7, 6, 4, 2, 6, 0, 0, 8, 9, 5, 5, 0, 2, 1, 2, 7, 5, 7, 1, 9, 8, 5, 3, 1, 7, 1, 7, 7, 9, 4, 0, 8, 1, 0, 4, 5, 9, 3, 7, 7, 4, 7, 4, 5, 4, 5, 0, 6, 0, 9, 9, 9, 7, 8, 8, 0, 6, 5, 1, 1, 4, 8, 8, 2, 1, 0, 2, 6, 3, 1, 2, 7, 1, 6, 8, 1, 7, 8, 4, 0, 0, 0, 8, 9, 3, 2, 9, 9, 9, 9, 4
Offset: 0

Views

Author

Keywords

Comments

A quartic number with denominator 2. - Charles R Greathouse IV, Aug 27 2017

Examples

			0.913545457...
		

Crossrefs

Programs

Formula

Equals cos(2*Pi/15) = 2*A019887^2 - 1 = 1 - 2*A019821^2. - R. J. Mathar, Jun 18 2006
Equals 2*A019842*A019866. - R. J. Mathar, Jan 17 2021
Largest of the 4 real-valued roots of 16*x^4-8*x^3-16*x^2+8*x+1=0. (Other A019851, -A019815, -A019887). - R. J. Mathar, Sep 04 2025

A019955 Decimal expansion of tangent of 57 degrees.

Original entry on oeis.org

1, 5, 3, 9, 8, 6, 4, 9, 6, 3, 8, 1, 4, 5, 8, 2, 9, 0, 4, 8, 2, 6, 7, 9, 6, 9, 7, 2, 6, 0, 2, 7, 8, 0, 1, 2, 5, 7, 0, 8, 3, 8, 7, 0, 3, 2, 1, 6, 5, 4, 8, 1, 6, 7, 9, 7, 9, 9, 1, 8, 5, 5, 0, 3, 0, 0, 2, 3, 3, 3, 5, 6, 6, 9, 4, 9, 0, 8, 4, 1, 2, 5, 4, 0, 8, 1, 5, 7, 6, 6, 3, 6, 7, 8, 2, 9, 6, 5, 5
Offset: 1

Views

Author

Keywords

Comments

Also the decimal expansion of cotangent of 33 degrees. - Ivan Panchenko, Sep 01 2014

Examples

			1.5398649638145829048267969726027801257083870321654816797991855...
		

Crossrefs

Cf. A019866 (sine of 56 degrees).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); Tan(19*Pi(R)/60); // G. C. Greubel, Nov 22 2018
    
  • Mathematica
    RealDigits[Tan[57 Degree],10,120][[1]] (* Harvey P. Dale, Jul 20 2016 *)
    RealDigits[Tan[19*Pi/60], 10, 100][[1]] (* G. C. Greubel, Nov 22 2018 *)
  • PARI
    default(realprecision, 100); tan(19*Pi/60) \\ G. C. Greubel, Nov 22 2018
    
  • Sage
    numerical_approx(tan(19*pi/60), digits=100) # G. C. Greubel, Nov 22 2018

Formula

Equals cot(11*Pi/90) = (1/4)*(2 - sqrt(2*(5 - sqrt(5))))*(2 - (2 + sqrt(3))*(3 + sqrt(5))). - G. C. Greubel, Nov 22 2018
Showing 1-2 of 2 results.